J. Mater. Sci. Technol. ›› 2022, Vol. 118: 54-63.DOI: 10.1016/j.jmst.2021.11.055
• Research Article • Previous Articles Next Articles
Lei Chenga,b, Baihai Lic, Hui Yind, Jiajie Fane, Quanjun Xianga,b,*(
)
Received:2021-10-09
Revised:2021-11-17
Accepted:2021-11-22
Published:2022-08-10
Online:2022-02-22
Contact:
Quanjun Xiang
About author:* State Key Laboratory of Electronic Thin Film and In-tegrated Devices, School of Electronic Science and Engineering, University of Elec-tronic Science and Technology of China, Chengdu 610054, China. E-mail address: xiangqj@uestc.edu.cn (Q. Xiang).Lei Cheng, Baihai Li, Hui Yin, Jiajie Fan, Quanjun Xiang. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction[J]. J. Mater. Sci. Technol., 2022, 118: 54-63.
Fig. 1. Structural characterizations. (a) SEM image of CR. (b) HRTEM and (c, d) AC HAADF-STEM images of CuCR SCC. (e) Partially zoomed-in image of the selected region 1 in (d). (f) Corresponding fast Fourier transform pattern of the selected region 2 in (d). Scale bars, 2 1/nm. (g) EDS mapping of CuCR SCC. (h) Corresponding intensity profiles along lines 1 and 2 in (e). (i) XRD patterns of CR, CR-H, and CuCR SCC.
Fig. 2. Atomic structure and coordination state analysis. (a) Normalized Cu K-edge XANES and (b) Fourier-transformed EXAFS spectra of CuCR SCC with Cu foil, Cu2O and CuO as references. Wavelet transform contour plots of (c) CuCR SCC and (d) Cu foil. (e) Schematic illustration for the Cd vacancies formed by annealing treatment on protonated CdS nanorods (left), and the Cu clusters anchored on Cd vacancies at the edge of CdS nanorods (right). (f) Low temperature X-band EPR spectra of CuCR SCC before and after photoactivation.
Fig. 3. Photocatalytic performance of CO2 reduction. Photocatalytic performance for (a) CO and (b) CH4 generation of CuCR SCC, CR and CR-H during the reaction proceeds upon illumination for 5 h. (c) The average rate of CO and CH4 generation of as-synthesized samples with reaction proceeds for 5 h. (d) Calculated TON and (e) selectivity for CO of CuCR SCC, CR and CR-H. (f) Photocatalytic stability for CO production of CuCR SCC, CR and CR-H.
Fig. 4. In situ DRIFTS analysis. (a-c) The in situ DRIFTS spectra of CuCR SCC. The characteristic infrared peaks are highlighted after the introduction of mixed gas (CO2 + H2O) under dark and Xenon lamp irradiation in the wavenumber ranges of 700-3900 cm-1. (d) Three-dimensional visualization for the dynamically adsorbed surface species and CO2 conversion intermediates during the photocatalytic period. (e) Schematic illustration of the possible conversion of reactive intermediates for CO and CH4 generation on CuCR SCC.
Fig. 5. Charge carrier dynamics analysis. High resolution XPS spectra for (a) Cd 3d and (b) S 2p of CuCR SCC and CR. (c) High resolution XPS spectra for Cu 2p of CuCR SCC and CuCR-L SCC. (d-f) Time-resolved transient PL decay curves (the fitted curves indicated as black lines) of (d) CuCR SCC, (e) CR-H and (f) CR (Excitation wavelength of 370 nm). (g) Schematic illustration of internal charge carrier field formation in CuCR SCC and CR, respectively. (h) The calculated isosteric heat (Qst) for CO2 adsorption of CuCR SCC and CR.
Fig. 6. CO2 adsorption and DFT analysis. (a) The calculated absorption energies and Qst for CO2 over CuCR SCC and CR. (b) Projected density of states (PDOS) of 3d-orbitals of Cu clusters for CuCR SCC, 2p-orbitals of free CO2, and their p-d hybridization after CO2 adsorption (the enlarged image of CO2 on CuCR SCC as shown in the right). (c) DOS of CuCR SCC and CR before and after CO2 adsorption, respectively (the dotted line represents Fermi level). (d) Charge density differences of CuCR SCC by Cu clusters occupying in Cd vacancies of CdS nano-rods (cyan represents for holes and yellow for electrons).
| [1] |
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936.
DOI URL |
| [2] |
Y. Xia, J. Yu, Chem 6 (2020) 1039-1040.
DOI URL |
| [3] |
Y. Li, B. Li, D. Zhang, L. Cheng, Q. Xiang, ACS Nano 14 (2020) 10552-10561.
DOI URL |
| [4] |
D. Li, Y. Huang, S. Li, C. Wang, Y. Li, X. Zhang, Y. Liu, Chin. J. Catal. 41 (2020) 154-160.
DOI URL |
| [5] |
L. Cheng, H. Ying, C. Cai, J. Fan, Q. Xiang, Small 16 (2020) 2002411.
DOI URL |
| [6] |
L. Cheng, X. Li, H. Zhang, Q. Xiang, J. Phys. Chem. Lett. 10 (2019) 3488-3494.
DOI PMID |
| [7] |
P. Kuang, Y. Wang, B. Zhu, F. Xia, C.W. Tung, J. Wu, H. Chen, J. Yu, Adv. Mater. 33 (2021) 2008599.
DOI URL |
| [8] |
L. Cheng, D. Zhang, Y. Liao, F. Li, H. Zhang, Q. Xiang, J. Colloid Interface Sci. 555 (2019) 94-103.
DOI URL |
| [9] |
M. Sayed, L. Zhang, J. Yu, Chem. Eng. J. 397 (2020) 125390.
DOI URL |
| [10] |
T. Di, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 170-178.
DOI URL |
| [11] |
Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Fan, J. Yu, J. Mater. Sci. Technol. 56 (2020) 143-150.
DOI URL |
| [12] |
L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447.
DOI URL |
| [13] | X. Zhou, Acta Phys. Chim. Sin. 37 (2021) 2008064. |
| [14] |
X. Ma, Q. Xiang, Y. Liao, T. Wen, H. Zhang, Appl. Surf. Sci. 457 (2018) 846-855.
DOI URL |
| [15] |
M. Wang, J. Cheng, X. Wang, X. Hong, J. Fan, H. Yu, Chin. J. Catal. 42 (2021) 37-45.
DOI URL |
| [16] |
Y. Lu, X. Ou, W. Wang, J. Fan, K. Lv, Chin. J. Catal. 41 (2020) 209-218.
DOI URL |
| [17] |
C.-.C. Hou, H.-.F. Wang, C. Li, Q. Xu, Energy Environ. Sci. 13 (2020) 1658-1693.
DOI URL |
| [18] |
P. Xia, S. Cao, B. Zhu, M. Liu, M. Shi, J. Yu, Y. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5218-5225.
DOI URL |
| [19] |
Y. Li, D. Zhang, X. Feng, Q. Xiang, Chin. J. Catal. 41 (2020) 21-30.
DOI URL |
| [20] | S. Wageh, A.A. Al-Ghamdi, L.J. Liu, Acta Phys. Chim. Sin. 37 (2021) 2010024. |
| [21] |
Y. He, X. Chen, C. Huang, L. Li, C. Yang, Y. Yu, Chin. J. Catal. 42 (2021) 123-130.
DOI URL |
| [22] |
M. Xiong, J. Yan, B. Chai, G. Fan, G. Song, J. Mater. Sci. Technol. 56 (2020) 179-188.
DOI URL |
| [23] |
R. Shen, Y. Ding, S. Li, P. Zhang, Q. Xiang, Y.H. Ng, X. Li, Chin. J. Catal. 42 (2021) 25-36.
DOI URL |
| [24] |
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613.
DOI URL |
| [25] |
Y. Li, H. Cheng, T. Yao, Z. Sun, W. Yan, Y. Jiang, Y. Xie, Y. Sun, Y. Huang, S. Liu, J. Zhang, Y. Xie, T. Hu, L. Yang, Z. Wu, S. Wei, J. Am. Chem. Soc. 134 (2012) 17997-18003.
DOI URL |
| [26] |
R. Zhou, S. Ma, Y. Yang, D. Li, B. Qu, X.C. Zeng, Phys. Chem. Chem. Phys. 21 (2019) 8945-8955.
DOI URL |
| [27] |
Q. Sun, N. Wang, Q. Fan, L. Zeng, A. Mayoral, S. Miao, R. Yang, Z. Jiang, W. Zhou, J. Zhang, T. Zhang, J. Xu, P. Zhang, J. Cheng, D.C. Yang, R. Jia, L. Li, Q. Zhang, Y. Wang, O. Terasaki, J. Yu, Angew. Chem. Int. Ed. 59 (2020) 19618-19627.
DOI URL |
| [28] |
W. Rong, H. Zou, W. Zang, S. Xi, S. Wei, B. Long, J. Hu, Y. Ji, L. Duan, Angew. Chem. Int. Ed. 60 (2020) 466-472.
DOI URL |
| [29] |
C. Wang, L. Wang, J. Jin, J. Liu, Y. Li, M. Wu, L. Chen, B. Wang, X. Yang, B. Su, Appl. Catal. B 188 (2016) 351-359.
DOI URL |
| [30] |
S. Wang, M. Xu, T. Peng, C. Zhang, T. Li, I. Hussain, J. Wang, B. Tan, Nat. Commun. 10 (2019) 676.
DOI URL |
| [31] |
F. Li, X. Yue, H. Zhou, J. Fan, Q. Xiang, Chin. J. Catal. 42 (2020) 1608-1616.
DOI URL |
| [32] |
F. Li, X. Yue, D. Zhang, J. Fan, Q. Xiang, Appl. Catal., B 292 (2021) 120179.
DOI URL |
| [33] |
G. Kresse, J. Furthmüller, J. Hafner, Phys. Rev. B 50 (1994) 13181.
PMID |
| [34] |
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 48 (1993) 4978.
PMID |
| [35] |
P.E. Blochl, Phy. Rev. B 50 (1994) 17953.
DOI URL |
| [36] | S. Grimme, J. Antony, S. Ehrlich, H.J. Krieg, Chem. Phys. 132 (2010) 154104. |
| [37] |
X. Zhang, G. Cui, H. Feng, L. Chen, H. Wang, B. Wang, X. Zhang, L. Zheng, S. Hong, M. Wei, Nat. Commun. 10 (2019) 5812.
DOI PMID |
| [38] |
L. Cheng, D. Zhang, Y. Liao, H. Zhang, Q. Xiang, Sol. RRL 3 (2019) 1900062.
DOI URL |
| [39] |
D. Ren, R. Shen, Z. Jiang, X. Lu, X. Li, Chin. J. Catal. 41 (2020) 31-40.
DOI URL |
| [40] |
Y. Yang, D. Zhang, Q. Xiang, Nanoscale 11 (2019) 18797-18805.
DOI URL |
| [41] |
B.H. Lee, S. Park, M. Kim, A.K. Sinha, S.C. Lee, E. Jung, W.J. Chang, K.S. Lee, J.H. Kim, S.P. Cho, H. Kim, K.T. Nam, T. Hyeon, Nat. Mater. 18 (2019) 620-626.
DOI URL |
| [42] |
H.S. Shang, X.Y. Zhou, J.C. Dong, A. Li, X. Zhao, Q.H. Liu, Y. Lin, J.J. Pei, Z. Li, Z.L. Jiang, D.N. Zhou, L.R. Zheng, Y. Wang, J. Zhou, Z.K. Yang, R. Cao, R. Sarangi, T.T. Sun, X. Yang, X.S. Zheng, W.S. Yan, Z.B. Zhuang, J. Li, W.X. Chen, D.S. Wang, J.T. Zhang, Y.D. Li, Nat. Commun. 11 (2020) 3049.
DOI URL |
| [43] |
Y. Li, X. Li, H. Zhang, J. Fan, Q. Xiang, J. Mater. Sci. Technol. 56 (2020) 69-88.
DOI URL |
| [44] |
H. Yu, J. Xu, D. Gao, J. Fan, J. Yu, Sci. China Mater. 63 (2020) 2215-2227.
DOI URL |
| [45] |
W. Zhang, C.Q. Huang, Q. Xiao, L. Yu, L. Shuai, P. An, J. Zhang, M. Qiu, Z. Ren, Y. Yu, J. Am. Chem. Soc. 142 (2020) 11417-11427.
DOI PMID |
| [46] |
N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu, Y. Xiong, J. Am. Chem. Soc. 140 (2018) 9434-9443.
DOI PMID |
| [47] |
Y. Zhou, L. Zhang, W. Wang, Nat. Commun. 10 (2019) 506.
DOI URL |
| [48] |
H. Zhang, J. Wei, J. Dong, G. Liu, L. Shi, P. An, G. Zhao, J. Kong, X. Wang, X. Meng, J. Zhang, J. Ye, Angew. Chem. Int. Ed. 128 (2016) 14522-14526.
DOI URL |
| [49] |
J. Wang, T. Xia, L. Wang, X. Zheng, Z. Qi, C. Gao, J. Zhu, Z. Li, H. Xu, Y. Xiong, Angew. Chem. Int. Ed. 57 (2018) 16447-16451.
DOI PMID |
| [50] |
Y. Ji, Y. Luo, J. Am. Chem. Soc. 138 (2016) 15896-15902.
DOI URL |
| [51] |
X. Liu, M. Ye, S. Zhang, G. Huang, C. Li, J. Yu, P.K. Wong, S. Liu, J. Mater. Chem. A 6 (2018) 24245-24255.
DOI URL |
| [52] |
P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaroniec, J. Mater. Chem. A 5 (2017) 3230-3238.
DOI URL |
| [53] |
L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng, K. Yang, Y. Li, ACS Catal. 6 (2016) 1097-1108.
DOI URL |
| [54] |
F. Li, D. Zhang, Q. Xiang, Chem. Commun. 56 (2020) 2443-2446.
DOI URL |
| [55] |
D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Appl. Catal. B Environ. 231 (2018) 368-380.
DOI URL |
| [56] |
S.K. Kaiser, Z. Chen, D.A. Faust, S. Mitchell, J. Perez-Ramirez, Chem. Rev. 120 (2020) 11703-11809.
DOI URL |
| [57] |
Q. Li, T. Shi, X. Li, K. Lv, M. Li, F. Liu, H. Li, M. Lei, Appl. Catal. B Environ. 229 (2018) 8-14.
DOI URL |
| [58] |
R. Shen, Y. Ding, S. Li, P. Zhang, Q. Xiang, Y.H. Ng, X. Li, Chin. J. Catal. 42 (2021) 25-36.
DOI URL |
| [59] |
Y. Li, X. Li, H. Zhang, Q. Xiang, Nanoscale Horiz. 5 (2020) 765-786.
DOI URL |
| [60] |
Q. Xiang, F. Li, D. Zhang, Y. Liao, H. Zhou, Appl. Surf. Sci. 495 (2019) 143520.
DOI URL |
| [61] |
Y. Xia, Z. Tian, T. Heil, A. Meng, B. Cheng, S. Cao, J. Yu, M. Antonietti, Joule 3 (2019) 2792-2805.
DOI URL |
| [62] |
G.Z. Chen, K.J. Chen, J.W. Fu, M. Liu, Rare Met. 39 (2020) 607-609.
DOI URL |
| [63] |
L. Cheng, D. Zhang, Y. Liao, J. Fan, Q. Xiang, Chin. J. Catal. 42 (2021) 131-140.
DOI URL |
| [64] |
S.W. Cao, Rare Met. 39 (2020) 610-612.
DOI URL |
| [65] |
Y. Li, F. Gong, Q. Zhou, X. Feng, Q. Xiang, Appl. Catal. B 268 (2020) 118381.
DOI URL |
| [66] |
M.J.I. Khan, S. Babar, A. Nabi, A.M. Rana, M. Iqbal, S.U. Rehman, J. Ahmad, J. Alloys Compd. 695 (2017) 3605-3611.
DOI URL |
| [67] |
M.J.I. Khan, Z. Kanwal, Optik 193 (2019) 162985 (Stuttg).
DOI URL |
| [68] |
J.C. Liu, X.L. Ma, Y. Li, Y.G. Wang, H. Xiao, J. Li, Nat. Commun. 9 (2018) 1610.
DOI URL |
| [69] |
Y.G. Wang, D. Mei, V.A. Glezakou, J. Li, R. Rousseau, Nat. Commun. 6 (2015) 6511.
DOI URL |
| [1] | Zhiwei Zhao, Xiaofeng Li, Kai Dai, Jinfeng Zhang, Graham Dawson. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme heterostructure with effective interface charge separation and CO2 reduction performance [J]. J. Mater. Sci. Technol., 2022, 117(0): 109-119. |
| [2] | Zhongliao Wang, Yifan Chen, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity [J]. J. Mater. Sci. Technol., 2020, 56(0): 143-150. |
| [3] | Jun Xiao, Weiyi Yang, Shuang Gao, Caixia Sun, Qi Li. Fabrication ofultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination [J]. J. Mater. Sci. Technol., 2018, 34(12): 2331-2336. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
