J. Mater. Sci. Technol. ›› 2022, Vol. 131: 122-166.DOI: 10.1016/j.jmst.2022.05.020
• Review Article • Previous Articles Next Articles
Usman Qumara, Jahan Zeb Hassana, Rukhsar Ahmad Bhattib, Ali Razac,*(), Ghazanfar Nazird, Walid Nabgane,*(
), Muhammad Ikrama,*(
)
Received:
2022-03-07
Revised:
2022-04-14
Accepted:
2022-05-10
Published:
2022-06-07
Online:
2022-06-07
Contact:
Ali Raza,Walid Nabgan,Muhammad Ikram
About author:
dr.muhammadikram@gcu.edu.pk (M. Ikram)Usman Qumar, Jahan Zeb Hassan, Rukhsar Ahmad Bhatti, Ali Raza, Ghazanfar Nazir, Walid Nabgan, Muhammad Ikram. Photocatalysis vs adsorption by metal oxide nanoparticles[J]. J. Mater. Sci. Technol., 2022, 131: 122-166.
Fig. 2. Various morphologies of MO-nanostructures. (a, b) ZnO nanobrushes. Reproduced with permission from Ref. [38]. Copyright 2015 Royal Society of Chemistry. (c) ZnO@ZIF-8 core-shell microspheres. Reproduced with permission from Ref. [42]. Copyright 2016 Royal Society of Chemistry. (d) ZnO nanospindle. Reproduced with permission from Ref. [48]. Copyright 2015 Royal Society of Chemistry, (e, f) ZnO nanotubes (NTs). Reproduced with permission from Ref. [49]. Copyright 2018 Royal Society of Chemistry, (g) KTaO3. Reproduced with permission from Ref. [50]. Copyright 2008 Springer. (h) ZnO nanorods (NRs). Reproduced with permission from Ref. [48]. Copyright 2015 Royal Chemical Society. (i) As-prepared nanohusks of iron oxide. Reproduced with permission from Ref. [51]. Copyright 2015 Springer Nature. (j) WO3 nanoflowers. Reproduced with permission from Ref. [52]. Copyright 2017 Springer Nature.
Fig. 3. (a) Idea of degradation of pollutant by heterogeneous photocatalysis. Here, the redox potentials (E0) of some active radicals, such as H+/H2, O2/O2-, and H2O/OH-, should be noted as 0 V, 0.33 V, and 0.42 V, Reproduced with permission from Ref. [55]. Copyright 2016 Royal Society of Chemistry. (Information is taken from Ref. [59].) (b) Monitoring of a typical photocatalysis by UV-vis absorption spectrophotometer. Here, a typical aqueous naphthalene solution was mixed with TiO2-nanofiber, and data was collected at different time intervals. The inset image shows magnified lmax (monitored at 275 nm wavelength). Reproduced with permission from Ref. [54]. Copyright 2014 American Chemical Society.
Fig. 4. Photoinduced response in TiO2 photocatalytic mechanism and parallel time scales. Reproduced with permission from Ref. [61]. Copyright 2014 American Chemical Society.
Fig. 5. (a) Photodegradation of dye with Ag/TiO2 NPs in the occurrence of effluent organic matter. Reproduced with permission from Ref. [75]. Copyright 2019 Springer Nature. (b) Representation of (i and ii) adsorption model of cationic RhB dyes on pure TiO2 and F-TiO2 particle surface, and (iii) electron-transferring procedures and successive excitation of RhB dye on F-TiO2 particle surfaces. (c, d) SEM micrographs of pristine anatase TiO2 and F-TiO2 particles. Reproduced with permission from Ref. [69]. Copyright 2016 Royal Society of Chemistry. (e) Biogenic synthesized TiO2 NPs degrade industrial reactive yellow 86 dye. Reproduced with permission from Ref. [74]. Copyright 2021 Springer Nature.
Fig. 6. (a) Representation of preparation of TiO2/UiO-66 photocatalyst, (i-iii) SEM micrograph. Reproduced with permission from Ref. [80]. Copyright 2020 Elsevier B.V. (b) Visualization of preparing a scheme of TiO2@C-N(x) NPs. Reproduced with permission from Ref. [81]. Copyright 2019 Elsevier B.V. (c) Schematic illustration of the evolution of TiO2/C HNTs. Reproduced with permission from Ref. [84]. Copyright 2019 Elsevier B.V.
Fig. 7. (a) Visualization of the possible synthesis process of (i) Pd/ZnO-1, (ii) Pd/ZnO-2, (iii) Pd/ZnO-3; (b) Pd band structures, and ZnO heterojunction and Fermi level equilibrium without UV light illumination; (c) recommended charge separation method and photocatalytic activity of as-prepared Pd/ZnO samples under UV illumination. Reproduced with permission from Ref. [97]. Copyright 2016 Elsevier B.V. (d) Schematic drawing of charge transfer mechanism in Ag-loaded ZnO nanostructures in UV and visible light excitation. Photocatalytic response for RhB dye degradation with kinetics plots. Reproduced with permission from Ref. [100]. Copyright 2020 American Chemical Society. (e) Hierarchical ZnO incorporated into CeO2 NPs as direct Z-scheme heterojunction, (f) photodegradation performance of RhB measured at 554 nm, and (g) photodegradation rate curves and identical fitted kinetics curves of the blank experiment, CeO2, ZnO, and ZnO/CeO2 nanocomposites in light illumination. Reproduced with permission from Ref. [99]. Copyright 2018 American Chemical Society.
Fig. 8. (a) Iso-surface plots of frontier orbitals of C7F15? when joined with hydroxyl or water molecules, and matching Gibbs free energy change at 298.15 K and reaction enthalpy change, (b) purple and blue iso-surfaces shown charge combination and depletion in space, respectively; a proposed pathway of PFOA photodegradation with FeO/CS under sunlight irradiation, (c) photodegradation by FeO/CS. Reproduced with permission from Ref. [110]. Copyright 2020 Elsevier B.V. (d) Peroxymonosulfate activation mechanism by Fe-Co-O-g-C3N4 for light degradation of SMX, (e) degradation rate, (f) first-order kinetics. Reproduced with permission from Ref. [113]. Copyright 2020 American Chemical Society.
Fig. 9. Schematic diagram of semiconductor photocatalysis. Photocatalytic response of (a) hydrogen evolution, (b) conversion of CO2, (c) dye degradation, and (d) water sterilization. Reproduced the modified form with permission from Ref. [117]. Copyright 2021 Elsevier B.V.
Fig. 10. (a) Graphic visualization of charge transferring procedure in a metal-semiconductor heterostructure, (b) representation of charge transfer phenomenon of metal-MO nanostructures. Reproduced with permission from Ref. [55]. Copyright 2016 Royal Society of Chemistry. (c) Proposed photocatalytic response and energy band diagram of Au@TiO2 nanospheres in solar light activation, (d) illustration of four different TiO2 nanospheres designs with/without Au NPs, surface-loaded or spatially confined Au NPs, SEM micrographs of (e) TiO2 nanospheres and (f) Au on TiO2 nanospheres or surface-loaded Au NPs on TiO2 nanospheres. Insets display high magnifying pictures of respective samples, (g, h) TEM micrographs of Au@TiO2 or spatially confined Au NPs of mono cores and mostly multiple cores. Reproduced with permission from Ref. [135]. Copyright 2014 Royal Society of Chemistry.
Fig. 11. Engineering energy flows on single Au-tipped CdS nanorod heterostructures. (a) TEM image of typical single Au-tipped CdS nanorod heterostructures (top). Enlarged TEM image (bottom) shows a Au nanoparticle at the tip. (b) Schematic illustrating two distinct photocatalysis mechanisms with the opposite direction of energy flow (opposite polarity after photoinduced charge-separation). In mechanism A at 532 nm, the photogenerated energetic electrons in the gold metal are injected to the conduction band (CB) of the semiconductor. In mechanism B at 405 nm, the photogenerated electrons in the CB of the semiconductor are rapidly trapped by the gold metal. (c) Super-resolution mapping of single reactive sites on a Au-tipped CdS nanorod heterostructure during the oxidation reaction at 532 nm (mechanism A). (d) Super-resolution mapping of single reactive sites on a Au-tipped CdS nanorod heterostructure during the same oxidation reaction after turning on the 405 nm laser (in addition to the 532 nm laser, needed to excite the resorufin product) (mechanism B). Reproduced with permission from Ref. [131]. Copyright 2014 American Chemical Society.
Fig. 12. (a) Visualization of yP-LDH_TCN nanocomposites and structural drawing of PDA synthesis procedures, (b) photograph of two relative photocatalytic methods for 0.5P-LDH_500CN with visible irradiation. A. Z-scheme charges diffusion route. B. direct solid-solid interaction interface heterojunction. Reproduced with permission from Ref. [141]. Copyright 2020 Elsevier B.V.
Fig. 13. Schematic drawing for the charge transfer and separation in g-C3N4-TiO2 Z-scheme system illuminated with UV light: (a, b) U100 and (c) U500. (d) TEM and (e) HRTEM images of sample U100, EDS mapping of (f) Ti element and (g) N element. Reproduced with permission from Ref. [143]. Copyright 2013 Royal Society of Chemistry.
Fig. 14. SEM micrographs for (a, b) Cu2O, (c, d) Cu2O/TiO2. Visualization of the proposed method to account for carbon dioxide photoreduction irradiated using UV-vis light ranging (λ ≥ 305 nm) of (e) octahedral Cu2O and (f) Cu2O/TiO2 nanocomposite. Reproduced with permission from Ref. [154]. Copyright 2017 Elsevier B.V.
Fig. 15. (a) Schematic visualization of charge transferring in WO3-TiO2 photocatalyst, (b) secondary electron and (c) backscattered electron SEM micrographs of the WO3-TiO2 photocatalyst using Ag NPs loaded with photodeposition, (d) TEM and (e) EDS mapping micrographs of WO3-TiO2 after MnOx photodeposition, (f) synthesis procedure of the WO3-TiO2 heterostructure, (g) WO3-TiO2 heterostructure DFT simulated geometries (gray, blue, and red atoms represent Ti, W, and O atoms, severally in the top image) and electrostatic potentials of ${{\left( 002 \right)}_{\text{W}{{\text{O}}_{3}}}}$ and ${{\left( 001 \right)}_{\text{Ti}{{\text{O}}_{2}}}}$ facets at the heterogeneous interface (bottom image), (h) indicating WO3 and TiO2 density of states (DOS), the interband states are underlined with the blue rectangle, (i) schematic view of the internal electric field among TiO2 and WO3. Reproduced with permission from Ref. [156]. Copyright 2020 Royal Society of Chemistry.
Fig. 16. (a-c) FESEM micrographs, (d) TiO2 potential position and CdS band edges, and schematic drawing of direct Z-scheme photocatalytic reaction for TiO2/CdS photocatalyst. Synthesized TiO2 (101) and CdS (220) crystal structure. (e) Red and grey balls stand for O and Ti atoms, respectively; (g) the rose-red and yellow balls represent Cd and S atoms, respectively. The estimated work function of (f) TiO2 and (h) TiO2. The blue and red dashed lines presented vacuum and Fermi levels, severally. Reproduced with permission from Ref. [158]. Copyright 2017 Elsevier B.V.
Fig. 17. (a) TEM image of a single Au-Cu2O core-shell NP having a compact MO shell and (b) SAED pattern indicating single-crystal planes. Reproduced with permission from Ref. [177]. Copyright 2012 American Chemical Society. (c) Pattern of a light-induced charge separation procedure in a typical metal-MO core-shell in photocatalysis. Reproduced with permission from Ref. [55]. Copyright 2016 Royal Society of Chemistry.
Fig. 18. (a) Demonstration of CdS nanostructure. Electron density difference maps and calculated CdS bond distances before and after applying electric fields in multiple directions (b) without an external electric field. (c) Application of an applied external electric field (0.05 V m-1) in direction of the CdS axis. (d) Application of an applied external electric field (0.05 V m-1) in the direction of the CdS c-axis. (e) Separation of e--h+ pairs in CdS NPs involves two distinct surfaces of Au-NRs with opposite polarized charges attributable to electromagnetic induction effects. (f) Illustration of photocatalytic improvement of metal-MO core-shell structures in the magnetic field. Reproduced with permission from Ref. [161]. Copyright 2020 Elsevier B.V.
Fig. 19. (a) Schematics of various structures of noble metal-MO NPs. Reproduced with permission from Ref. [185]. Copyright 2017 Royal Society of Chemistry. (b) Diagram of the construction of a Pd/CeO2 core/shell nanomaterial: (I) Fabrication of carbon sphere decorated using PVP template; (II) construction of colloidal Pd NPs from tetrachloropalladic acid; (III) synthesis of carbon-Pd-Ce(III) nanomaterials by a hydrothermal route; (IV) preparation of Pd/hCeO2 core/shell nanomaterial through hollow inner space with a calcination method. Reproduced with permission from Ref. [186]. Copyright 2013 American Chemical Society. (c) SEM micrograph of TiO2/Au NPs. Reproduced with permission from Ref. [178]. TEM micrographs of (d) Cu2O/Pd cuboctahedron nanocomposites. Reproduced with permission from Ref. [179]. Copyright 2015 and 2014 respectively John Wiley & Sons. (e) TiO2/Ag nanotube heterojunctions. Reproduced with permission from Ref. [180]. (f) Hollow doughnut-like ZnO/Au composites. Reproduced with permission from Ref. [181]. Copyright 2015 and 2012, respectively American Chemical Society.
Fig. 20. FESEM micrograph of ZnO nanoforest, using the regular/angled sample stage of an electron microscope to image at different areas and magnifications. Reproduced with permission from Ref. [213]. Copyright 2015 Royal Society of Chemistry.
Fig. 21. (a) Representative of MO Semiconductor, (b) illustration of charge transferring across the metal-MO junction. Reproduced with permission from Ref. [221]. Copyright 2017 MDPI. (c) Mechanism of C-doped anatase TiO2 nanofiber mats for dye degradation, (d) FESEM of TiO2-NF, (e) UV-vis spectra of pollutant elimination, (f) HRTEM of TiO2 NF. Reproduced with permission from Ref. [54]. Copyright 2014 American Chemical Society. FESEM of TiO2/CuO nanofibers at (g) lower and (h) higher magnifications and (i) presentation of excited e-/h+ in TiO2/CuO. Reproduced with permission from Ref. [220]. Copyright 2013 Elsevier B.V. (j) FESEM and (k) TEM images of PVAc/TTIP/Zn(CH3COO)2. Reproduced with permission from Ref. [222]. Copyright 2012 Elsevier B.V. FESEM of ZnO nanofibers synthesize at (l) 450 °C; (m) 650 °C, (n) ZnO nanofibers, (o) TEM micrograph and SAED pattern of ZnO nanofibers (inset). The arrows indicated various crystal planes of ZnO. Reproduced with permission from Ref. [53]. Copyright 2013 Elsevier B.V. (p) TiO2-CuO FESEM, (q) FESEM micrograph of TiO2-CuO, (r) photocatalytic proficiency, (s) photocatalytic reaction over TiO2/CuO heterostructures. Reproduced with permission from Ref. [223]. Copyright 2013 Elsevier B.V. Cross-sectional SEM photographs of (t) TiO2NP-rice grain structure electrode and (u) TiO2NP-NF electrode (top side exhibit magnified pictures for scattering layers). Reproduced with permission from Ref. [224]. Copyright 2011 Royal Society of Chemistry.
Fig. 22. (a) Transformation reaction mechanism and simulated crystal form of TMA+ intercalated layered tetratitanate to TiO2 nanostructured. TEM micrographs and matching HRTEM micrographs of anatase TiO2 nanospindles (b, d) pH 6.0-T150, (c, e) pH 7.0-T180 after hydrothermal route for 24 h. Reproduced with permission from Ref. [228]. Copyright 2019 John Wiley & Sons. Bi nanospheres for (f) water splitting, (g) EDS line analysis, (h) HRTEM micrograph, and HRTEM. Reproduced with permission from Ref. [230]. Copyright 2014 American Chemical Society. ZnO nanosheets for photocatalysis: (i) stability, (j) recycling test, (k) effect of catalyst loading over the NaBiS2-ZnO composite, and (l) proposed phenomena for photocatalytic degradation of tetracycline in the presence of NaBiS2-ZnO composites. Reproduced with permission from Ref. [232]. Copyright 2021 Elsevier B.V.
Fig. 23. Schematic visualization of probable contact ways between As (III) and As (V) and MO nanostructures aimed at arsenic ions elimination. Reproduced with permission from Ref. [235]. Copyright 2020 Royal Society of Chemistry.
Fig. 24. (a) Schematic diagram of batch adsorption, (b) various mechanisms occurring in the adsorption process. Reproduced with permission from Ref. [254]. Copyright 2020 Royal Society of Chemistry.
Fig. 25. (a) Indicating two synthesis procedures for multi-shelled hollow microspheres of MOs, (b) synthesis parameters affect product morphology. The red arrow specifies a change in precursor concentration; the yellow arrow shows repeating adsorption phenomena before calcination; the light blue arrow reveals an increase in ethanol ratio; the green arrows exhibit changing the annealing atmosphere from air to oxygen before calcination. Reproduced with permission from Ref. [263]. Copyright 2016 Nature publishing group. (c) Adsorption phenomena for Cr6+ ions removal from graphitized maghemite NPs. Reproduced with permission from Ref. [264]. Copyright 2018 Elsevier B.V.
Fig. 26. (a) SEM and (b) TEM micrographs of sodium titanate (hierarchical flower-like nanocrystals), (c) UV-vis absorption spectra of MB solution (20 mg L-1, 50 mL) for prepared material in 20 mg TMF presence, inset revealed digital images of degraded solutions, (d) adsorption MB (20 mg L-1, 50 mL) by TMF, TiO2’s nanobelt, and P25. Reproduced with permission from Ref. [281]. Copyright 2013 American Chemical Society. (e) Interaction pathways among Orange II dye and surface functionalities of TiO2 aerogel. Reproduced with permission from Ref. [279]. Copyright 2009 Elsevier B.V. (f) Schematic diagram of TiO2-NPs fixation at external porosity of AC support contaminant transfer towards photocatalytic centers. Reproduced with permission from Ref. [280]. Copyright 2019 Elsevier B.V.
Fig. 27. (a) Schematic presentation and smart cryogels-ZnO images and (b) MB (200 mg/L) removal below silicone oil with cryogels-ZnO-1%. Reproduced with permission from Ref. [286]. Copyright 2017 American Chemical Society. SEM micrographs of freeze-dried (c) 3DG (three-dimensional graphene network), (d, e) ZnO NRs/3DG, (f, g) Ag NPs/ZnO NRs/3DG composites, (h) EDS spectrum of Ag NPs/ ZnO NRs/3DG composites, (i) only single ZnO NR on the surface of 3DG in Ag NPs/ZnO NRs/3DG sample through qualitative EDS 2D map analysis of several components in the ternary nanocrystal. Deviation of ln(C0/C) vs light irradiated time under (j) UV and (k) visible illumination of prepared materials in comparison to blank, (l) MB decolonization. Reproduced with permission from Ref. [287] Copyright 2019 Elsevier B.V.
Fig. 28. Suggested MB reduction and charge transfer and mechanism on the Ag/ZnO/3DG surface in (a) UV and (b) visible light. Reproduced with permission from Ref. [287]. Copyright 2019 Elsevier B.V.
Fig. 29. (a) Representation of Preferable Adsorption of Different Dyes IONPs and (b) magnetic separation of eriochrome black T and fluorescein adsorbed IONPs by an external magnetic field. Reproduced with permission from Ref. [295]. Copyright 2011 American Chemical Society. (c) Schematic illustration of contact paths among Hg2+ ions and ZnS shell coated on IONPx, as a function of pH. Reproduced with permission from Ref. [300]. Copyright 2018 John Wiley & Sons.
Fig. 30. (a) Adsorption picture of WO3 nano adsorbent for MB adsorption. Reproduced with permission from Ref. [316]. Copyright 2017 Elsevier B.V. (b) SEM micrograph of WO3 nanosheets separated from substrate, (c) pH-induced MB molecules desorption on WO3 nanosheets surfaces, (d) chart drawing presenting cationic dyes desorption procedures in acidic and alkaline behavior, respectively, (e) visualization of dye-degradation activity: photographs of (i, ii) MB solution (10 mL) with 15 mg L-1 concentration and 15 mg L-1 concentration plus mixed solution respectively, (ii) 10 ml MO solution with (iii) before and (iv) and after desorption using 3.5 mg amorphous WO3 nanosheets in solution, (v-viii) are attributing absorption spectra in (a-d). Small black squares and white circles correspond to the indication of MB and MO molecules’ fundamental absorption peaks in aqueous solution, respectively. Reproduced with permission from Ref. [315]. Copyright 2015 Royal Society of Chemistry.
Fig. 31. (a) Schematic drawing of a likely interaction among pest molecules and Fe3O4/RGO nanocomposites, (b) steady diminution in absorbance spectra using time exposed pest adsorption by Fe3O4/RGO adsorbent, which is detached through external magnetism effect. Reproduced with permission from Ref. [328]. Copyright 2017 Elsevier B.V. (c) Effect of pH on MG dye removal with RGO as an adsorbent, (d) HRTEM images of RGO showing holes (circled in brown) and defects (indicated by white arrows), (e) schematic illustration of RGO lamella consisting of holes and residual oxygen functionalities. Reproduced with permission from Ref. [323]. Copyright 2017 Elsevier B.V.
[1] | G.L. Dotto, G. McKay, J. Environ. Chem. Eng. 8 (2020) 103988. |
[2] | H.T. Wang, X.Y. Mi, Y. Li, S.H. Zhan, Adv. Mater. 32 (2020) 1806843. |
[3] |
J.S. Qian, X. Gao, B.C. Pan, Environ. Sci. Technol. 54 (2020) 8509-8526.
DOI URL |
[4] | R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adv. Colloid Interface Sci. 272 (2019) 102009. |
[5] | A. Yusuf, A. Sodiq, A. Giwa, J. Eke, O. Pikuda, G. De Luca, J.L. Di Salvo, S. Chakraborty, J. Clean. Prod. 266 (2020) 121867. |
[6] | M. Selvaraj, A. Hai, F. Banat, M.A. Haija, J. Water Process. Eng. 33 (2020) 100996. |
[7] |
P. Raizada, V. Soni, A. Kumar, P. Singh, A. Parwaz Khan, A.M. Asiri, V.K. Thakur, J. Materiomics 7 (2021) 388-418.
DOI URL |
[8] |
S. Mureed, S. Naz, A. Haider, A. Raza, A. Ul-Hamid, J. Haider, M. Ikram, R. Ghaffar, M. Irshad, A. Ghaffar, A. Saeed, Nanoscale Res. Lett. 16 (2021) 91.
DOI URL |
[9] | A. Raza, J.Z. Hassan, M. Ikram, S. Ali, U. Farooq, Q. Khan, M. Maqbool, Adv. Mater. Interfaces 8 (2021) 2002205. |
[10] | U. Qumar, J. Hassan, S. Naz, A. Haider, A. Raza, A. Ul-Hamid, J. Haider, I. Shahzadi, I. Ahmad, M. Ikram, Nanotechnology 32 (2021) 255704. |
[11] | A. Raza, J.Z. Hassan, A. Mahmood, W. Nabgan, M. Ikram, Desalination 531 (2022) 115684. |
[12] |
A. Raza, X. Zhang, S. Ali, C. Cao, A.A. Rafi, G. Li, Photochem 2 (2022) 272-298.
DOI URL |
[13] |
T.K. Sen, S. Afroze, H.M. Ang, Water Air Soil Pollut. 218 (2011) 499-515.
DOI URL |
[14] | S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur, M. Amini, J. Environ. Chem. Eng. 8 (2020) 103726. |
[15] |
L. Wang, C.X. Shi, L. Wang, L. Pan, X.W. Zhang, J.J. Zou, Nanoscale 12 (2020) 4790-4815.
DOI PMID |
[16] | M. Fang, X.L. Tan, Z.X. Liu, B.W. Hu, X.K. Wang, Research 2021 (2021) 9794329. |
[17] |
Y.T. Zou, Y.Z. Hu, Z.W. Shen, L. Yao, D.Y. Tang, S. Zhang, S.Q. Wang, B.W. Hu, G.X. Zhao, X.K. Wang, J. Environ. Sci. 115 (2022) 190-214.
DOI URL |
[18] | K. Kannan, D. Radhika, K.K. Sadasivuni, K.R. Reddy, A.V. Raghu, Adv. Colloid Interface Sci. 281 (2020) 102178. |
[19] |
H. Saleem, S.J. Zaidi, Nanomaterials 10 (2020) 1764.
DOI URL |
[20] | K. Shaheen, H. Suo, T. Arshad, Z. Shah, S.A. Khan, S.B. Khan, M.N. Khan, M. Liu, L. Ma, J. Cui, Y.T. Ji, Y. Wang, J. Water Process. Eng. 34 (2020) 101138. |
[21] | C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf, S. Karup-puchamy, J. Alloy. Compd. 828 (2020) 154281. |
[22] |
C. Ros, T. Andreu, J.R. Morante, J. Mater. Chem. A 8 (2020) 10625-10669.
DOI URL |
[23] | T. Velempini, E. Prabakaran, K. Pillay, Mater. Today Chem. 19 (2021) 100380. |
[24] |
M.S. Danish, L.L. Estrella, I.M.A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali, H. Zaheb, T. Senjyu, Metals 11 (2021) 80.
DOI URL |
[25] |
Q. Zhu, K. Ye, W. Zhu, W.J. Xu, C.W. Zou, L. Song, E. Sharman, L.J. Wang, S.Y. Jin, G.Z. Zhang, Y. Luo, J. Jiang, J. Phys. Chem. Lett. 11 (2020) 2502-2509.
DOI URL |
[26] | K.K. Chenab, B. Sohrabi, A. Jafari, S. Ramakrishna, Mater. Today Chem. 16 (2020) 100262. |
[27] | I. Rabani, C. Bathula, R. Zafar, G.Z. Rabani, S. Hussain, S.A. Patil, Y.S. Seo, J. Environ. Chem. Eng. 9 (2021) 104852. |
[28] | Z. Fallah, E.N. Zare, M. Ghomi, F. Ahmadijokani, M. Amini, M. Tajbakhsh, M. Arjmand, G. Sharma, H. Ali, A. Ahmad, P. Makvandi, E. Lichtfouse, M. Sil-lanpää, R.S. Varma, Chemosphere 275 (2021) 130055. |
[29] | M. Ikram, M.I. Khan, A. Raza, M. Imran, A. Ul-Hamid, S. Ali, Physica E 124 (2020) 114246. |
[30] |
M. Ikram, E. Umar, A. Raza, A. Haider, S. Naz, A. Ul-Hamid, J. Haider, I. Shahzadi, J. Hassan, S. Ali, RSC Adv. 10 (2020) 24215-24233.
DOI PMID |
[31] | M. Ikram, J. Hassan, A. Raza, A. Haider, S. Naz, A. Ul-Hamid, J. Haider, I. Shahzadi, U. Qamar, S. Ali, RSC Adv. 10 (2020) 30 0 07-30 024. |
[32] | J. Hassan, S. Naz, A. Haider, A. Raza, A. Ul-Hamid, U. Qumar, J. Haider, S. Goumri-Said, M.B. Kanoun, M. Ikram, Mater. Sci. Eng. B 272 (2021) 115365. |
[33] |
R. Gusain, O.P. Khatri, J. Mater. Chem. A 1 (2013) 5612-5619.
DOI URL |
[34] |
H. Zhang, X.F. Wang, C.C. Chen, C.H. An, Y.N. Xu, Y.Y. Dong, Q.Y. Zhang, Y.J. Wang, L.F. Jiao, H.T. Yuan, Inorg. Chem. Front. 3 (2016) 1048-1057.
DOI URL |
[35] | Q. Li, Z.S. Chen, H.H. Wang, H. Yang, T. Wen, S.Q. Wang, B.W. Hu, X.K. Wang, Sci. Total Environ. 792 (2021) 148546. |
[36] |
L.H. Li, J. Xiao, P. Liu, G.W. Yang, Sci. Rep. 5 (2015) 9028.
DOI PMID |
[37] |
S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, J. Environ. Manage. 92 (2011) 311-330.
DOI URL |
[38] |
A. Gupta, J.R. Saurav, S. Bhattacharya, RSC Adv. 5 (2015) 71472-71481.
DOI URL |
[39] |
I. Oller, W. Gernjak, M.I. Maldonado, L.A. Pérez-Estrada, J.A. Sánchez-Pérez, S. Malato, J. Hazard. Mater. 138 (2006) 507-517.
PMID |
[40] |
U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C-Photochem. Rev. 9 (2008) 1-12.
DOI URL |
[41] | R. Gusain, N. Singhal, R. Singh, U. Kumar, O.P. Khatri, ChemPlusChem 81 (2016) 4 89-4 95. |
[42] |
S. El-Hankari, J. Aguilera-Sigalat, D. Bradshaw, J. Mater. Chem. A 4 (2016) 13509-13518.
DOI URL |
[43] | Y.H. Tang, G. Zhang, C.B Liu, S.L. Luo, X.L. Xu, L. Chen, B.G. Wang, J. Hazard. Mater. 252-253 (2013) 115-122. |
[44] |
H.Y. Zhu, R. Jiang, Y.Q. Fu, R.R. Li, J. Yao, S.T. Jiang, Appl. Surf. Sci. 369 (2016) 1-10.
DOI URL |
[45] |
S.W. Zhang, W.Q. Xu, M.Y. Zeng, J.X. Li, J.Z. Li, J.Z. Xu, X.K. Wang, J. Mater. Chem. A 1 (2013) 11691-11697.
DOI URL |
[46] |
A. McLaren, T. Valdes-Solis, G. Li, S.C. Tsang, J. Am. Chem. Soc. 131 (2009) 12540-12541.
DOI PMID |
[47] |
P. Mondal, C.B. Majumder, B. Mohanty, J. Hazard. Mater. 150 (2008) 695-702.
PMID |
[48] |
N. Kumar, H. Mittal, L. Reddy, P. Nair, J.C. Ngila, V. Parashar, RSC Adv. 5 (2015) 38801-38809.
DOI URL |
[49] | L. Schlur, J.R. Calado, D. Spitzer, R. Soc. Open Sci. 5 (2018) 180510. |
[50] |
H. Hayashi, Y. Hakuta, J. Mater. Sci. 43 (2008) 2342-2347.
DOI URL |
[51] |
F.N. Sayed, V. Polshettiwar, Sci. Rep. 5 (2015) 9733.
DOI URL |
[52] |
C.Y. Park, J.M. Seo, H. Jo, J. Park, K.M. Ok, T.J. Park, Sci. Rep. 7 (2017) 40928.
DOI URL |
[53] |
P. Singh, K. Mondal, A. Sharma, J. Colloid Interface Sci. 394 (2013) 208-215.
DOI URL |
[54] |
K. Mondal, S. Bhattacharyya, A. Sharma, Ind. Eng. Chemistry. Res. 53 (2014) 18900-18909.
DOI URL |
[55] |
K. Mondal, A. Sharma, RSC Adv. 6 (2016) 83589-83612.
DOI URL |
[56] | J.J. Pignatello, E. Oliveros, A. MacKay, Cri. Rev. Environ. Sci. Technol. 36 (2006) 1-84. |
[57] |
S.H. Bossmann, E. Oliveros, S. Göb, S. Siegwart, E.P. Dahlen, L. Payawan, M. Straub, M. Wörner, A.M. Braun, J. Phys. Chem. A 102 (1998) 5542-5550.
DOI URL |
[58] | R.V. Prihod’ko, N.M. Soboleva, J. Chem. 2013 (2013) 168701. |
[59] |
Y.A. Ilan, D. Meisel, G. Czapski, Isr. J. Chem. 12 (1974) 891-895.
DOI URL |
[60] |
U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170 (2009) 520-529.
DOI PMID |
[61] | J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Chem. Rev. 114 (2014) 9919-9986. |
[62] |
D.D. Gao, R.R. Yuan, J.J. Fan, X.K. Hong, H.G. Yu, J. Mater. Sci. Technol. 56 (2020) 122-132.
DOI URL |
[63] |
Z.L. Wang, Y.F. Chen, L.Y. Zhang, B. Cheng, J.G. Yu, J. Fan, J. Mater. Sci. Technol. 56 (2020) 143-150.
DOI URL |
[64] |
C.M. Teh, A.R. Mohamed, J. Alloys Compd. 509 (2011) 1648-1660.
DOI URL |
[65] |
M.A. Rauf, M.A. Meetani, S. Hisaindee, Desalination 276 (2011) 13-27.
DOI URL |
[66] |
T. Aarthi, P. Narahari, G. Madras, J. Hazard. Mater. 149 (2007) 725-734.
PMID |
[67] |
H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, Nano Lett. 13 (2013) 2412-2417.
DOI URL |
[68] |
H. Park, W. Choi, J. Phys. Chem. B 108 (2004) 4086-4093.
DOI URL |
[69] |
J. Guo, S.J. Yuan, W. Jiang, H.R. Yue, Z. Cui, B. Liang, RSC Adv. 6 (2016) 4090-4100.
DOI URL |
[70] | S. Han, T. Wang, B. Li, J. Appl. Polym. Sci. 134 (2017) 44925. |
[71] |
E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, J. Hazard. Mater. 136 (2006) 85-94.
PMID |
[72] |
A. Aguedach, S. Brosillon, J. Morvan, E.K. Lhadi, Appl. Catal. B-Environ. 57 (2005) 55-62.
DOI URL |
[73] |
M. Muneer, D. Bahnemann, Appl. Catal. B-Environ. 36 (2002) 95-111.
DOI URL |
[74] |
G. Kaur, H. Kaur, S. Kumar, V. Verma, H.S. Jhinjer, J. Singh, M. Rawat, P.P. Singh, S. Al-Rashed, J. Inorg. Organomet. Polym. Mater. 31 (2021) 1111-1119.
DOI URL |
[75] |
H.Y. Deng, H. He, S.J. Sun, X.T. Zhu, D.X. Zhou, F.X. Han, B. Huang, X.J. Pan, Environ. Sci. Pollut. Res. 26 (2019) 35900-35912.
DOI URL |
[76] | C. Xia, H. Wang, J.K. Kim, J. Wang, Adv. Funct. Mater. 31 (2021) 2008247. |
[77] | S.J. Yu, H.W. Pang, S.Y. Huang, H. Tang, S.Q. Wang, M.Q. Qiu, Z.S. Chen, H. Yang, G. Song, D. Fu, B.W. Hu, X.X. Wang, Sci. Total Environ. 800 (2021) 149662. |
[78] | M. Hao, M. Qiu, H. Yang, B. Hu, X. Wang, Sci. Total Environ. 760 (2021) 143333. |
[79] |
G.L. Xu, H.B. Zhang, J. Wei, H.X. Zhang, X. Wu, Y.S. Li, C. Li, J. Zhang, J.H. Ye, ACS Nano 12 (2018) 5333-5340.
DOI URL |
[80] | Y.J. Ma, Q. Tang, W.Y. Sun, Z.Y. Yao, W.H. Zhu, T. Li, J.Y. Wang, Appl. Catal. B-Environ. 270 (2020) 118856. |
[81] |
H.L. Liu, Y.P. Ma, J.Y. Chen, M.C. Wen, G.Y. Li, T.C. An, Appl. Catal. B-Environ. 250 (2019) 337-346.
DOI URL |
[82] |
S.H. Liu, W.X. Lin, J. Hazard. Mater. 368 (2019) 468-476.
DOI URL |
[83] |
S.L. Wang, M. Xu, T.Y. Peng, C.X. Zhang, T. Li, I. Hussain, J.Y. Wang, B.E. Tan, Nat. Commun. 10 (2019) 676.
DOI URL |
[84] | Z.Q. Liang, X.J. Bai, P. Hao, Y.C. Guo, Y.J. Xue, J. Tian, H.Z Cui, Appl. Catal. B-En-viron. 243 (2019) 711-720. |
[85] |
K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Water Res. 88 (2016) 428-448.
DOI URL |
[86] |
S. Maiti, S. Pal, K.K. Chattopadhyay, CrystEngComm 17 (2015) 9264-9295.
DOI URL |
[87] |
N. Daneshvar, D. Salari, A.R. Khataee, J. Photochem. Photobiol. A-Chem. 162 (2004) 317-322.
DOI URL |
[88] |
S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Sol. Energy Mater. Solar Cells 77 (2003) 65-82.
DOI URL |
[89] |
C. Hariharan, Appl. Catal. A-Gen. 304 (2006) 55-61.
DOI URL |
[90] |
N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khataee, M.H. Rasoulifard, Sep. Purif. Technol. 58 (2007) 91-98.
DOI URL |
[91] |
X. Chen, F. Zhang, Q. Wang, X. Han, X. Li, J.Y. Liu, H.M. Lin, F.Y. Qu, Dalton Trans. 44 (2015) 3034-3042.
DOI URL |
[92] |
H. Bel Hadjltaief, S. Ben Ameur, P. Da Costa, M. Ben Zina, M. Elena Galvez, Appl. Clay Sci. 152 (2018) 148-157.
DOI URL |
[93] |
B. Cojocaru, D. Avram, V. Kessler, V. Parvulescu, G. Seisenbaeva, C. Tiseanu, Sci. Rep. 7 (2017) 9598.
DOI PMID |
[94] |
R. Ullah, J. Dutta, J. Hazard. Mater. 156 (2008) 194-200.
DOI PMID |
[95] |
H.A. Rafaie, R.M. Nor, M.S. Azmina, N.I.T. Ramli, R. Mohamed, J. Environ. Chem. Eng. 5 (2017) 3963-3972.
DOI URL |
[96] | M. Shirzad-Siboni, A. Jonidi-Jafari, M. Farzadkia, A. Esrafili, M. Gholami, J. En-viron. Manage. 186 (2017) 1-11. |
[97] |
N. Güy, S. Çakar, M. Özacar, J. Colloid Interface Sci. 466 (2016) 128-137.
DOI URL |
[98] |
S. Bhatia, N. Verma, R.K. Bedi, Optical Mater. 62 (2016) 392-398.
DOI URL |
[99] |
L.Y. Zhu, H. Li, P.F. Xia, Z.R. Liu, D.H. Xiong, ACS Appl. Mater. Interfaces 10 (2018) 39679-39687.
DOI URL |
[100] |
T.N.Q. Trang, T.B. Phan, N.D. Nam, V.T.H. Thu, ACS Appl. Mater. Interfaces 12 (2020) 12195-12206.
DOI URL |
[101] |
O. Akhavan, R. Azimirad, Appl. Catal. A-Gen. 369 (2009) 77-82.
DOI URL |
[102] |
W.P. Du, Y.M. Xu, Y.S. Wang, Langmuir 24 (2008) 175-181.
DOI URL |
[103] |
F. Wu, N.S. Deng, H.L. Hua, Chemosphere 41 (2000) 1233-1238.
DOI URL |
[104] |
M.H. Khedr, K.S. Abdel Halim, N.K. Soliman, Mater. Lett. 63 (2009) 598-601.
DOI URL |
[105] |
Y.D. Dong, L. Xing, F. Hu, A. Umar, X. Wu, Vacuum 150 (2018) 35-40.
DOI URL |
[106] |
G. Rothenberger, J. Moser, M. Graetzel, N. Serpone, D.K. Sharma, J. Am. Chem. Soc. 107 (1985) 8054-8059.
DOI URL |
[107] |
P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Sci. Total Environ. 424 (2012) 1-10.
DOI URL |
[108] |
C.T. Wang, J. Non-Cryst. Solids 353 (2007) 1126-1133.
DOI URL |
[109] |
Z.C. Kadirova, K.-i. Katsumata, T. Isobe, N. Matsushita, A. Nakajima, K. Okada, J. Environ. Chem. Eng. 2 (2014) 2026-2036.
DOI URL |
[110] | T.Y. Xu, H.D. Ji, Y.Y. Gu, T.Y. Tong, Y.B. Xia, L.Z. Zhang, D.Y. Zhao, Chem. Eng. J. 388 (2020) 124230. |
[111] |
R.J. Qu, J.Q. Liu, C.G. Li, L.S. Wang, Z.Y. Wang, J.C. Wu, Water Res. 104 (2016) 34-43.
DOI URL |
[112] |
J.F. Niu, H. Lin, J.L. Xu, H. Wu, Y.Y. Li, Environ. Sci. Technol. 46 (2012) 10191-10198.
DOI URL |
[113] |
S.Z. Wang, Y. Liu, J.L. Wang, Environ. Sci. Technol. 54 (2020) 10361-10369.
DOI URL |
[114] |
D.K. Padhi, T.K. Panigrahi, K. Parida, S.K. Singh, P.M. Mishra, ACS Sustain. Chem. Eng. 5 (2017) 10551-10562.
DOI URL |
[115] |
I.K. Konstantinou, T.A. Albanis, Appl. Catal. B-Environ. 49 (2004) 1-14.
DOI URL |
[116] |
A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A-Chem. 328 (2010) 8-26.
DOI URL |
[117] | Y. Yuan, R.T. Guo, L.F. Hong, X.Y. Ji, Z.D. Lin, Z.S. Li, W.G. Pan, Mater. Today Energy 21 (2021) 100829. |
[118] |
H. Yu, M. Chen, P.M. Rice, S.X. Wang, R.L. White, S. Sun, Nano Lett. 5 (2005) 379-382.
DOI URL |
[119] |
J. Theerthagiri, S. Chandrasekaran, S. Salla, V. Elakkiya, R.A. Senthil, P. Nithyadharseni, T. Maiyalagan, K. Micheal, A. Ayeshamariam, M.V. Arasu, N.A. Al-Dhabi, H.S. Kim, J. Solid State Chem. 267 (2018) 35-52.
DOI URL |
[120] |
K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov, N. Nuraje, J. Mater. Chem. A 6 (2018) 21696-21718.
DOI URL |
[121] | Z.P. Liu, X.Q. Gong, J. Kohanoff, C. Sanchez, P. Hu, Phys. Rev. Lett. 91 (2003) 266102. |
[122] |
W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Nat. Mater. 7 (2008) 308-313.
DOI PMID |
[123] |
Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 136 (2014) 458-465.
DOI URL |
[124] |
S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10 (2011) 911-921.
DOI URL |
[125] |
F.L. Wang, Y.J. Jiang, A. Gautam, Y.R. Li, R. Amal, ACS Catal. 4 (2014) 1451-1457.
DOI URL |
[126] |
Z.W. Seh, S. Liu, M. Low, S.Y. Zhang, Z. Liu, A. Mlayah, M.Y. Han, Adv. Mater. 24 (2012) 2310-2314.
DOI URL |
[127] |
S.K. Dutta, S.K. Mehetor, N. Pradhan, J. Phys. Chem. Lett. 6 (2015) 936-944.
DOI URL |
[128] |
A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, J. Am. Chem. Soc. 129 (2007) 14852-14853.
DOI URL |
[129] |
J.S. Lee, E.V. Shevchenko, D.V. Talapin, J. Am. Chem. Soc. 130 (2008) 9673-9675.
DOI URL |
[130] |
M.T. Sheldon, P.-E. Trudeau, T. Mokari, L.W. Wang, A.P. Alivisatos, Nano Lett. 9 (2009) 3676-3682.
DOI URL |
[131] |
J.W. Ha, T.P.A. Ruberu, R. Han, B. Dong, J. Vela, N. Fang, J. Am. Chem. Soc. 136 (2014) 1398-1408.
DOI URL |
[132] |
J.T. Zhang, Y. Tang, K. Lee, M. Ouyang, Nature 466 (2010) 91-95.
DOI URL |
[133] |
L. Amirav, A.P. Alivisatos, J. Phys. Chem. Lett. 1 (2010) 1051-1054.
DOI URL |
[134] |
X.L. Yu, A. Shavel, X.Q. An, Z.S Luo, M. Ibáñez, A. Cabot, J. Am. Chem. Soc. 136 (2014) 9236-9239.
DOI URL |
[135] |
M. Gao, C.K.N. Peh, Y. Pan, Q.H. Xu, G.W. Ho, Nanoscale 6 (2014) 12655-12664.
DOI URL |
[136] |
Q. Li, Y. Xia, C. Yang, K.L. Lv, M. Lei, M. Li, Chem. Eng. J. 349 (2018) 287-296.
DOI URL |
[137] |
M. Liu, S.J. Wei, W. Chen, L. Gao, X.Y. Li, L.Q. Mao, H.F. Dang, J. Chin. Chem. Soc. 67 (2020) 246-252.
DOI URL |
[138] |
Y. Zhou, Y.W. Tan, Y. Xiang, J. Zhu, ChemistrySelect 4 (2019) 12963-12970.
DOI |
[139] | J.X. Low, B.Z. Dai, T. Tong, C.J. Jiang, J.G. Yu, Adv. Mater. 31 (2019) 1802981. |
[140] |
Y.S. Liu, G.B. Ji, M.A. Dastageer, L. Zhu, J.Y. Wang, B. Zhang, X.F. Chang, M.A. Gondal, RSC Adv. 4 (2014) 56961-56969.
DOI URL |
[141] | X.H. Li, Z.X Yu, L.Y. Shao, H.J. Zeng, Y.C. Liu, X.F. Feng, J. Hazard. Mater. 386 (2020) 121650. |
[142] | F.R. Guo, J.C. Chen, J.Z. Zhao, Z. Chen, D.S. Xia, Z.L. Zhan, Q. Wang, Chem. Eng. J. 386 (2020) 124014. |
[143] |
J.G. Yu, S.H. Wang, J.X. Low, W. Xiao, Phys. Chem. Chem. Phys. 15 (2013) 16883-16890.
DOI URL |
[144] |
Y.P. Xie, Y.Q. Yang, G.S. Wang, G. Liu, J. Colloid Interface Sci. 503 (2017) 198-204.
DOI URL |
[145] |
J. Ding, Z. Dai, F. Qin, H.P. Zhao, S. Zhao, R. Chen, Appl. Catal. B-Environ. 205 (2017) 281-291.
DOI URL |
[146] |
M. Liu, H.M. Li, W.J. Wang, Catal. Today 264 (2016) 236-242.
DOI URL |
[147] |
C. Zhou, N.F. Ye, X.H. Yan, J.J. Wang, J.M. Pan, D.F. Wang, Q. Wang, J.X. Zu, X.N. Cheng, J. Materiomics 4 (2018) 238-246.
DOI URL |
[148] |
L.N. Kong, X.T. Zhang, C.H. Wang, J.P. Xu, X.W. Du, L. Li, Appl. Surf. Sci. 448 (2018) 288-296.
DOI URL |
[149] |
J. Li, M. Zhang, Q.Y. Li, J.J. Yang, Appl. Surf. Sci. 391 (2017) 184-193.
DOI URL |
[150] |
J.Y. Lee, W.K. Jo, J. Hazard. Mater. 314 (2016) 22-31.
DOI URL |
[151] |
X.B. Li, J. Xiong, Y. Xu, Z.J. Feng, J.T. Huang, Chin. J. Catal. 40 (2019) 424-433.
DOI URL |
[152] |
N.T. Thanh Truc, L. Giang Bach, N. Thi Hanh, T.D. Pham, N. Thi Phuong Le Chi, D.T. Tran, M.V. Nguyen, V.N. Nguyen, J. Colloid Interface Sci. 540 (2019) 1-8.
DOI URL |
[153] | J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, Adv. Energy Mater. 8 (2018) 1701503. |
[154] | M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Appl. Catal. B-En-viron. 217 (2017) 4 85-4 93. |
[155] |
J. Wang, G.H. Wang, X.H. Wei, G. Liu, J. Li, Appl. Surf. Sci. 456 (2018) 666-675.
DOI URL |
[156] |
Y. Liu, X.K. Zeng, C.D. Easton, Q.Y. Li, Y. Xia, Y.C. Yin, X. Hu, J. Hu, D.H. Xia, D.T. McCarthy, A. Deletic, C.H. Sun, J.G. Yu, X.W. Zhang, Nanoscale 12 (2020) 8775-8784.
DOI URL |
[157] |
S. Alizadeh, N. Fallah, M. Nikazar, Chem. Pap. 74 (2020) 133-143.
DOI URL |
[158] |
A.Y. Meng, B.C. Zhu, B. Zhong, L.Y. Zhang, B. Cheng, Appl. Surf. Sci. 422 (2017) 518-527.
DOI URL |
[159] |
S.F. Hung, Y.C. Yu, N.T. Suen, G.Q. Tzeng, C.W. Tung, Y.Y. Hsu, C.S. Hsu, C.K. Chang, T.S. Chan, H.S. Sheu, J.F. Lee, H.M. Chen, Chem. Commun. 52 (2016) 1567-1570.
DOI URL |
[160] | A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, S.M. Majhi, C.D. Bathula, A.V. Tran, S.W. Lee, J. Ind. Eng. Chem. 61 (2018) 78-86. |
[161] | W.Q. Gao, Q.L. Liu, S. Zhang, Y.Y. Yang, X.F. Zhang, H. Zhao, W. Qin, W.J. Zhou, X.N. Wang, H. Liu, Y.H. Sang, Nano Energy 71 (2020) 104624. |
[162] |
J. Liu, J.W. Feng, J. Gui, T. Chen, M. Xu, H.Z. Wang, H.F. Dong, H.L. Chen, X.W. Li, L. Wang, Z. Chen, Z.Z. Yang, J.J. Liu, W.C. Hao, Y. Yao, L. Gu, Y.X. Weng, Y. Huang, X.F. Duan, J.T. Zhang, Y. Li, Nano Energy 48 (2018) 44-52.
DOI URL |
[163] |
B. Babu, V.V.N. Harish, R. Koutavarapu, J. Shim, K. Yoo, J. Ind. Eng. Chem. 76 (2019) 476-487.
DOI URL |
[164] | D.D. Gao, W.J. Liu, Y. Xu, P. Wang, J.J. Fan, H.G. Yu, Appl. Catal. B-Environ. 260 (2020) 118190. |
[165] |
Q. Zhang, T.R. Zhang, J.P. Ge, Y.D. Yin, Nano Lett. 8 (2008) 2867-2871.
DOI PMID |
[166] |
I. Lee, J.B. Joo, Y. Yin, F. Zaera, Angew. Chem.-Int.ernational Edit. 50 (2011) 10208-10211.
DOI URL |
[167] | V. Hasija, P. Raizada, A. Sudhaik, K. Sharma, A. Kumar, P. Singh, S.B. Jonnala-gadda, V.K. Thakur, Appl. Mater. Today 15 (2019) 494-524. |
[168] | A. Zada, P. Muhammad, W. Ahmad, Z. Hussain, S. Ali, M. Khan, Q. Khan, M. Maqbool, Adv. Funct. Mater. 30 (2020) 1906744. |
[169] |
N. Singh, J. Prakash, R.K. Gupta, Mol. Syst. Des. Eng. 2 (2017) 422-439.
DOI URL |
[170] |
W. Chen, Y.H. Wang, S. Liu, L. Gao, L.Q. Mao, Z.Y. Fan, W.F. Shangguan, Z. Jiang, Appl. Surf. Sci. 445 (2018) 527-534.
DOI URL |
[171] |
Y.Y. Zhang, Y.C. Ma, L.L. Wang, Q.X. Sun, F. Zhang, J.S. Shi, RSC Adv. 7 (2017) 50701-50712.
DOI URL |
[172] |
M.A. Islam, J. Church, C. Han, H.S. Chung, E. Ji, J.H. Kim, N. Choudhary, G.H. Lee, W.H. Lee, Y. Jung, Sci. Rep. 7 (2017) 14944.
DOI URL |
[173] |
P. Ribao, J. Corredor, M.J. Rivero, I. Ortiz, J. Hazard. Mater. 372 (2019) 45-51.
DOI URL |
[174] |
T. Hirakawa, P.V. Kamat, J. Am. Chem. Soc. 127 (2005) 3928-3934.
PMID |
[175] |
N. Zhang, X. Fu, Y.J. Xu, J. Mater. Chem. 21 (2011) 8152-8158.
DOI URL |
[176] | N. Zhang, S.Q. Liu, X.Z. Fu, Y.J. Xu, J. Phys. Chem. C 115 (2011) 22901-22909. |
[177] |
L. Zhang, H. Jing, G. Boisvert, J.Z. He, H. Wang, ACS Nano 6 (2012) 3514-3527.
DOI PMID |
[178] |
J. Wang, R.A. Ando, P.H.C. Camargo, Angew. Chem. Int. Edit. 54 (2015) 6909-6912.
DOI URL |
[179] |
L.L. Wang, J. Ge, A.L. Wang, M.S. Deng, X.J. Wang, S. Bai, R. Li, J. Jiang, Q. Zhang, Y. Luo, Y.J. Xiong, Angew. Chem-Int. Edit. 53 (2014) 5107-5111.
DOI URL |
[180] |
D. Yang, Y.Y. Sun, Z.W. Tong, Y. Tian, Y.B. Li, Z.Y. Jiang, J. Phys. Chem. C 119 (2015) 5827-5835.
DOI URL |
[181] |
J. Geng, G.H. Song, X.D. Jia, F.F. Cheng, J.J. Zhu, J. Phys. Chem. C 116 (2012) 4517-4525.
DOI URL |
[182] |
L. De Rogatis, M. Cargnello, V. Gombac, B. Lorenzut, T. Montini, P. Fornasiero, ChemSusChem 3 (2010) 24-42.
DOI URL |
[183] |
L.C. Kong, G.T. Duan, G.M. Zuo, W.P. Cai, Z. Cheng, Mater. Chem. Phys. 123 (2010) 421-426.
DOI URL |
[184] |
Y. Yu, C.Y. Cao, Z. Chen, H. Liu, P. Li, Z.F. Dou, W.G. Song, Chem. Commun. 49 (2013) 3116-3118.
DOI URL |
[185] |
X.Q. Liu, J. Iocozzia, Y. Wang, X. Cui, Y.H. Chen, S.Q. Zhao, Z. Li, Z.Q. Lin, Energy Environ. Sci. 10 (2017) 402-434.
DOI URL |
[186] |
N. Zhang, Y.J. Xu, Chem. Mater. 25 (2013) 1979-1988.
DOI URL |
[187] |
S.S. Chen, Y. Qi, C. Li, K. Domen, F.X. Zhang, Joule 2 (2018) 2260-2288.
DOI URL |
[188] |
Y.C. Zhang, S. He, W. Guo, Y. Hu, J.W. Huang, J.R. Mulcahy, W.D. Wei, Chem. Rev. 118 (2018) 2927-2954.
DOI URL |
[189] |
V. Kumaravel, S. Mathew, J. Bartlett, S.C. Pillai, Appl. Catal. B-Environ. 244 (2019) 1021-1064.
DOI URL |
[190] |
X.G. Zhang, X.B. Ke, J.F. Yao, J. Mater. Chem. A 6 (2018) 1941-1966.
DOI URL |
[191] | J.H. Yang, Y.Z. Guo, W.Z. Lu, R.B. Jiang, J.F. Wang, Adv. Mater. 30 (2018) 1802227. |
[192] |
M. Zhu, Y. Wang, Y.H. Deng, X. Peng, X. Wang, H. Yuan, Z.J. Yang, Y. Wang, H. Wang, Nanoscale 12 (2020) 7035-7044.
DOI URL |
[193] |
X.C. Zhou, W.L. Xu, G.K. Liu, D. Panda, P. Chen, J. Am. Chem. Soc. 132 (2010) 138-146.
DOI URL |
[194] |
J.E. Lee, S. Bera, Y.S. Choi, W.I. Lee, Appl. Catal. B-Environ. 214 (2017) 15-22.
DOI URL |
[195] |
S.K. Cushing, J. Li, J. Bright, B.T. Yost, P. Zheng, A.D. Bristow, N. Wu, J. Phys. Chem. C 119 (2015) 16239-16244.
DOI URL |
[196] |
C.H. Liu, H.F. Dong, N.Q. Wu, Y. Cao, X.J. Zhang, ACS Appl. Mater. Interfaces 10 (2018) 6991-7002.
DOI URL |
[197] |
Z.J. Hu, Y. Mi, Y.L. Ji, R. Wang, W.Y. Zhou, X.H. Qiu, X.F. Liu, Z.Y. Fang, X.C. Wu, Nanoscale 11 (2019) 16445-16454.
DOI URL |
[198] |
C. Kim, H. Lee, Catal. Sci. Technol. 8 (2018) 3718-3727.
DOI URL |
[199] |
H. Wang, X.T. Hu, Y.J. Ma, D.J. Zhu, T. Li, J.Y. Wang, Chin. J. Catal. 41 (2020) 95-102.
DOI URL |
[200] |
Y.N. Liu, C.L. Miao, P.F. Yang, Y.T. He, J.T. Feng, D.Q. Li, Appl. Catal. B-Environ. 244 (2019) 919-930.
DOI URL |
[201] |
B. Wang, K. Duke, J.C. Scaiano, A.E. Lanterna, J. Cataly. 379 (2019) 33-38.
DOI URL |
[202] |
J.J. Li, B.L. Zhu, G.C. Wang, Z.F. Liu, W.P. Huang, S.M. Zhang, Catal. Sci. Technol. 8 (2018) 6109-6122.
DOI URL |
[203] |
Q. Chen, X. Chen, M. Fang, J. Chen, Y. Li, Z. Xie, Q. Kuang, L. Zheng, J. Mater. Chem. A 7 (2019) 1334-1340.
DOI URL |
[204] |
W.Y. Shi, D. Duan, H.Y. Wang, C. Ma, Z.B. Sun, X.P. Song, Int. J. Hydrog. Energy 44 (2019) 13040-13051.
DOI URL |
[205] |
J. Gao, Z.C. Si, Y.F. Xu, L.P. Liu, Y.Y. Zhang, X.D. Wu, R.D. Ran, D. Weng, J. Phys. Chem. C 123 (2019) 1761-1769.
DOI URL |
[206] |
X.T. Cai, J.W. Wang, R.X. Wang, A. Wang, S.X. Zhong, J.R. Chen, S. Bai, J. Mater. Chem. A 7 (2019) 5266-5276.
DOI URL |
[207] |
M. Law, J. Goldberger, P.D. Yang, Ann. Rev. Mater. Res. 34 (2004) 83-122.
DOI URL |
[208] |
Z.W. Pan, Z.R. Dai, Z.L. Wang Zhong, Science 291 (2001) 1947-1949.
PMID |
[209] |
H.B. Wu, H.H. Hng, X.W. Lou, Adv. Mater. 24 (2012) 2567-2571.
DOI URL |
[210] |
G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes, J. Mater. Res. 18 (2003) 2588-2593.
DOI URL |
[211] |
X.W. Kang, S.W. Chen, J. Mater. Sci. 45 (2010) 2696-2702.
DOI URL |
[212] |
C. Ratanatawanate, A. Chyao, K.J. Balkus, J. Am. Chem. Soc. 133 (2011) 3492-3497.
DOI PMID |
[213] |
A. Gupta, K. Mondal, A. Sharma, S. Bhattacharya, RSC Adv. 5 (2015) 45897-45907.
DOI URL |
[214] |
Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63 (2003) 2223-2253.
DOI URL |
[215] | N.A.M. Nor, J. Jaafar, M.H.D. Othman, M.A. Rahman, J. Teknol.-Sci. Eng. 65 (2013) 83-88. |
[216] |
R. Ostermann, D. Li, Y.D. Yin, J.T. McCann, Y.N. Xia, Nano Lett. 6 (2006) 1297-1302.
PMID |
[217] |
S.K. Choi, S. Kim, S.K. Lim, H. Park, J. Phys. Chem. C 114 (2010) 16475-16480.
DOI URL |
[218] |
Y. Zhang, A.L. Yarin, Langmuir 27 (2011) 14627-14631.
DOI PMID |
[219] |
P.S. Kumar, J. Sundaramurthy, S. Sundarrajan, V.J. Babu, G. Singh, S.I. Al-lakhverdiev, S. Ramakrishna, Energy Environ. Sci. 7 (2014) 3192-3222.
DOI URL |
[220] |
S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Water Res. 47 (2013) 4059-4073.
DOI URL |
[221] |
K. Mondal, Inventions 2 (2017) 9.
DOI URL |
[222] | P. Du, L. Song, J. Xiong, N. Li, Z. Xi, L. Wang, D. Jin, S. Guo, Y. Yuan, Elec-trochim. Acta 78 (2012) 392-397. |
[223] |
S.S. Lee, H. Bai, Z. Liu, D.D. Sun, Appl. Catal. B-Environ. 140-141 (2013) 68-81.
DOI URL |
[224] |
P.M. Zhu, A.S. Nair, S.Y. Yang, S.J. Peng, S. Ramakrishna, J. Mater. Chem. 21 (2011) 12210-12212.
DOI URL |
[225] |
S.C. Feng, X.Y. Chen, Y. Zhou, W.G. Tu, P. Li, H.J. Li, Z.G. Zou, Nanoscale 6 (2014) 1896-1900.
DOI URL |
[226] |
M.Y. Xing, W.Z. Fang, X.L. Yang, B.Z. Tian, J.L. Zhang, Chem. Commun. 50 (2014) 6637-6640.
DOI URL |
[227] |
L. Cheng, M.W. Shao, X.H. Wang, H.B. Hu, Chem.-Eur. J. 15 (2009) 2310-2316.
DOI URL |
[228] | Y.E. Du, X.J. Niu, Y. Bai, H.X. Qi, Y.Q. Guo, Y.Q. Chen, P.F. Wang, X.J. Yang, Q. Feng, ChemistrySelect 4 (2019) 4 4 43-4 457. |
[229] |
H. Zhang, G. Du, W. Lu, L. Cheng, X. Zhu, Z. Jiao, CrystEngComm 14 (2012) 3793-3801.
DOI URL |
[230] |
Z.B. Jiao, Y. Zhang, S.X. Ouyang, H.C. Yu, G.X. Lu, J.H. Ye, Y.P. Bi, ACS Appl. Mater. Interfaces 6 (2014) 19488-19493.
DOI URL |
[231] |
K. Mondal, J. Kumar, A. Sharma, Nanomater. Energy 2 (2013) 121-133.
DOI URL |
[232] | R. Koutavarapu, C.V. Reddy, K. Syed, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, J. Shim, Chemosphere 267 (2021) 128559. |
[233] |
J.Y. Wang, N.L. Yang, H.J. Tang, Z.H. Dong, Q. Jin, M. Yang, D. Kisailus, H.J. Zhao, Z.Y. Tang, D. Wang, Angew. Chem.-Int. Edit. 52 (2013) 6417-6420.
DOI URL |
[234] |
Y.Y. Xu, Y.N. Dong, J. Shi, M.L. Xu, Z.F. Zhang, X.K. Yang, Catal. Commun. 13 (2011) 54-58.
DOI URL |
[235] |
M. Channegowda, Nanoscale Adv. 2 (2020) 5529-5554.
DOI URL |
[236] |
T. Kameda, Y. Suzuki, T. Yoshioka, J. Environ. Chem. Eng. 2 (2014) 2045-2049.
DOI URL |
[237] |
G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Environ. Sci. Pollut. Res. 26 (2019) 6245-6278.
DOI URL |
[238] |
K. Sunil, G. Karunakaran, S. Yadav, M. Padaki, V. Zadorozhnyy, R.K. Pai, Chem. Eng. J. 348 (2018) 678-684.
DOI URL |
[239] | A.F. Tag El-Din, M.E. El-Khouly, E.A. Elshehy, A.A. Atia, W.A. El-Said, Microp-orous Mesoporous Mater. 265 (2018) 211-218. |
[240] |
P.V. Nidheesh, T.S.A. Singh, Chemosphere 181 (2017) 418-432.
DOI PMID |
[241] |
A. Abejón, A. Garea, A. Irabien, Sep. Purif. Technol. 144 (2015) 46-53.
DOI URL |
[242] |
B. Lam, S. Déon, N. Morin-Crini, G. Crini, P. Fievet, J. Clean. Prod. 171 (2018) 927-933.
DOI URL |
[243] |
M.A. Barakat, Arabian J. Chem. 4 (2011) 361-377.
DOI URL |
[244] |
D. Magrì, G. Caputo, G. Perotto, A. Scarpellini, E. Colusso, F. Drago, A. Mar-tucci, A. Athanassiou, D. Fragouli, ACS Appl. Mater. Interfaces 10 (2018) 651-659.
DOI URL |
[245] | A.T. Le, S.Y. Pung, S. Sreekantan, A. Matsuda, D.P. Huynh, Heliyon 5 (2019) e01440. |
[246] |
T.A.H. Nguyen, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, Q.Y. Yue, Q. Li, T.V. Nguyen, Bioresour. Technol. 148 (2013) 574-585.
DOI URL |
[247] |
L.A. Malik, A. Bashir, A. Qureashi, A.H. Pandith, Environ. Chem. Lett. 17 (2019) 1495-1521.
DOI URL |
[248] |
S.H. Khorzughy, T. Eslamkish, F.D. Ardejani, M.R. Heydartaemeh, Korean J. Chem. Eng. 32 (2015) 88-96.
DOI URL |
[249] |
A.K. Shukla, J. Alam, M. Alhoshan, L. Arockiasamy Dass, F.A.A. Ali, M. MR, U. Mishra, M.A. Ansari, Environ. Sci.-Water Res. Technol. 4 (2018) 438-448.
DOI URL |
[250] | H. Chen, Y. Meng, S. Jia, W. Hua, Y. Cheng, J. Lu, H. Wang, Mater. Chem. Phys. 244 (2020) 122692. |
[251] | F. Ahmadijokani, S. Tajahmadi, A. Bahi, H. Molavi, M. Rezakazemi, F. Ko, T.M. Aminabhavi, M. Arjmand, Chemosphere 264 (2021) 128466. |
[252] |
J. Wei, Z.X. Yang, Y. Sun, C.K. Wang, J.L. Fan, G.Y. Kang, R. Zhang, X.Y. Dong, Y.F. Li, J. Mater. Sci. 54 (2019) 6709-6718.
DOI URL |
[253] |
M. Sharma, J. Singh, S. Hazra, S. Basu, Microchem. J. 145 (2019) 105-112.
DOI URL |
[254] |
K.Z. Elwakeel, A.M. Elgarahy, Z.A. Khan, M.S. Almughamisi, A.S. Al-Bogami, Mater. Adv. 1 (2020) 1546-1574.
DOI URL |
[255] |
P.K. Zhang, L. Wang, Sep. Purif. Technol. 70 (2010) 367-371.
DOI URL |
[256] |
M.I. El-Khaiary, J. Hazard. Mater. 158 (2008) 73-87.
DOI PMID |
[257] |
G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, M. Krimissa, Appl. Geochem. 22 (2007) 249-275.
DOI URL |
[258] |
N.H. Abdullah, K. Shameli, E.C. Abdullah, L.C. Abdullah, Compos. Pt. B-Eng. 162 (2019) 538-568.
DOI URL |
[259] |
S. Sen Gupta, K.G. Bhattacharyya, Adv. Colloid Interface Sci. 162 (2011) 39-58.
DOI URL |
[260] |
S.B. Wang, Y.L. Peng, Chem. Eng. J. 156 (2010) 11-24.
DOI URL |
[261] |
S. Lata, S.R. Samadder, J. Environ. Manage. 166 (2016) 387-406.
DOI URL |
[262] |
J. Theron, J.A. Walker, T.E. Cloete, Crit. Rev. Microbiol. 34 (2008) 43-69.
DOI PMID |
[263] |
J.Y. Wang, H.J. Tang, L.J. Zhang, H. Ren, R.B. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P.R. Liu, Y. Zhang, Y.R. Wen, L. Gu, G.H. Ma, Z.G. Su, Z.Y. Tang, H.J. Zhao, D. Wang, Nat. Energy 1 (2016) 16050.
DOI URL |
[264] | N. Khare, J. Bajpai, A.K. Bajpai, Environ. Nanotechnol., Monit. Manage. 10 (2018) 148-162. |
[265] |
H.P. Zhang, F.F. Xu, J.Y. Xue, S.Y. Chen, J.J. Wang, Y.J. Yang, Sci. Rep. 10 (2020) 6067.
DOI URL |
[266] |
X. Qu, J. Brame, Q. Li, P.J.J. Alvarez, Accounts Chem. Res. 46 (2013) 834-843.
DOI URL |
[267] |
A. Rahmani, H.Z. Mousavi, M. Fazli, Desalination 253 (2010) 94-100.
DOI URL |
[268] |
S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 38 (2013) 1232-1261.
DOI URL |
[269] |
A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, RSC Adv. 4 (2014) 37003-37026.
DOI URL |
[270] |
K. Nakata, A. Fujishima, J. Photochem. Photobiol. C-Photochem. Rev. 13 (2012) 169-189.
DOI URL |
[271] | Q. Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang, Adv. Mater. 31 (2019) 1901997. |
[272] | M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, J. Environ. Chem. Eng. 7 (2019) 103248. |
[273] |
R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li, J. Yang, D.W. Bahnemann, J.H. Pan, Catal. Today 335 (2019) 78-90.
DOI URL |
[274] |
L. Liu, H.J. Liu, Y.P. Zhao, Y.Q. Wang, Y.Q. Duan, G.D. Gao, M. Ge, W. Chen, Environ. Sci. Technol. 42 (2008) 2342-2348.
PMID |
[275] |
L. Xiong, Y. Yang, J.X. Mai, W.L. Sun, C.Y. Zhang, D.P. Wei, Q. Chen, J.R. Ni, Chem. Eng. J. 156 (2010) 313-320.
DOI URL |
[276] |
A. Ahmad, M.H. Razali, M. Mamat, F.S.B. Mehamod, K. Anuar Mat Amin, Chemosphere 168 (2017) 474-482.
DOI URL |
[277] |
C.K. Lee, S.S. Liu, L.C. Juang, C.C. Wang, M.D. Lyu, S.H. Hung, J. Hazard. Mater. 148 (2007) 756-760.
DOI URL |
[278] | M. Khairy, W. Zakaria, Egypti. J. Pet. 23 (2014) 419-426. |
[279] |
L. Abramian, H. El-Rassy, Chem. Eng. J. 150 (2009) 403-410.
DOI URL |
[280] |
C. Telegang Chekem, V. Goetz, Y. Richardson, G. Plantard, J. Blin, Catal. Today 328 (2019) 183-188.
DOI |
[281] |
M. Feng, W. You, Z.S. Wu, Q.D. Chen, H.B. Zhan, ACS Appl. Mater. Interfaces 5 (2013) 12654-12662.
DOI URL |
[282] |
R. Salehi, M. Arami, N.M. Mahmoodi, H. Bahrami, S. Khorramfar, Colloid. Surf. B-Biointerfaces 80 (2010) 86-93.
DOI URL |
[283] |
S. Moradi Dehaghi, B. Rahmanifar, A.M. Moradi, P.A. Azar, J. Saudi Chem. Soc. 18 (2014) 348-355.
DOI URL |
[284] |
A.L. Meng, J. Xing, Z.J. Li, Q.D. Li, ACS Appl. Mater. Interfaces 7 (2015) 27449-27457.
DOI URL |
[285] |
C.S. Lei, M. Pi, C.J. Jiang, B. Cheng, J.G. Yu, J. Colloid Interface Sci. 490 (2017) 242-251.
DOI URL |
[286] |
D.C. Wang, H.Y. Yu, M.L. Song, R.T. Yang, J.M. Yao, ACS Sustain. Chem. Eng. 5 (2017) 6776-6785.
DOI URL |
[287] |
M. Kheirabadi, M. Samadi, E. Asadian, Y. Zhou, C.Y. Dong, J.L. Zhang, A.Z. Moshfegh, J. Colloid Interface Sci. 537 (2019) 66-78.
DOI URL |
[288] |
R.T. Yang, H.Y. Yu, M.L. Song, Y.W. Zhou, J.M. Yao, Cellulose 23 (2016) 1871-1884.
DOI URL |
[289] |
H.Y. Yu, G.Y. Chen, Y.B. Wang, J.M. Yao, Cellulose 22 (2015) 261-273.
DOI URL |
[290] |
M.E. McHenry, D.E. Laughlin, Acta Mater. 48 (2000) 223-238.
DOI URL |
[291] |
M. Bystrzejewski, K. Pyrzyńska, A. Huczko, H. Lange, Carbon 47 (2009) 1201-1204.
DOI URL |
[292] |
S.T. Selvan, T.T.Y. Tan, D.K. Yi, N.R. Jana, Langmuir 26 (2010) 11631-11641.
DOI URL |
[293] |
U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Adv. Mater. 19 (2007) 33-60.
DOI URL |
[294] |
R.D. Ambashta, M. Sillanpää, J. Hazard. Mater. 180 (2010) 38-49.
DOI PMID |
[295] |
B. Saha, S. Das, J. Saikia, G. Das, J. Physical. Chem. C 115 (2011) 8024-8033.
DOI URL |
[296] |
M. Iram, C. Guo, Y. Guan, A. Ishfaq, H. Liu, J. Hazard. Mater. 181 (2010) 1039-1050.
DOI URL |
[297] |
Z. Wu, J. Wu, H. Xiang, M.S. Chun, K. Lee, Colloids Surf. A-Physicochem. Eng. Asp. 279 (2006) 167-174.
DOI URL |
[298] |
X. Zhang, P.Y. Zhang, Z. Wu, L. Zhang, G.M. Zeng, C.J. Zhou, Colloids Surf. A- Physicochem. Eng. Asp. 435 (2013) 85-90.
DOI URL |
[299] |
F. Liu, H. Tian, J.H. He, J. Colloid Int. Sci. 419 (2014) 68-72.
DOI URL |
[300] |
K. Patel, N. Singh, J.M. Nayak, B. Jha, S.K. Sahoo, R. Kumar, ChemistrySelect 3 (2018) 1840-1851.
DOI URL |
[301] |
C.P. Chen, P. Gunawan, R. Xu, J. Mater. Chem. 21 (2011) 1218-1225.
DOI URL |
[302] |
C. Shan, Z.Y. Ma, M.P. Tong, J.R. Ni, Water Res. 69 (2015) 252-260.
DOI URL |
[303] |
X.F. Shen, Q. Wang, W.L. Chen, Y.H. Pang, Appl. Surf. Sci. 317 (2014) 1028-1034.
DOI URL |
[304] |
H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 287 (1998) 53-56.
DOI URL |
[305] |
P.N. Diagboya, B.I. Olu-Owolabi, K.O. Adebowale, RSC Adv. 5 (2015) 2536-2542.
DOI URL |
[306] |
Y.H. Song, M. Lu, B. Huang, D.L. Wang, G. Wang, L. Zhou, J. Alloys Compd. 737 (2018) 113-121.
DOI URL |
[307] | J. Yang, J.D. Xiao, H.B. Cao, Z. Guo, J. Rabeah, A. Brückner, Y.B. Xie, J. Hazard. Mater. 360 (2018) 4 81-4 89. |
[308] |
R. Lin, J.W. Wan, Y. Xiong, K.L. Wu, W.C. Cheong, G. Zhou, D.S. Wang, Q. Peng, C. Chen, Y.D. Li, J. Am. Chem. Soc. 140 (2018) 9078-9082.
DOI URL |
[309] |
S. Jeon, K. Yong, J. Mater. Chem. 20 (2010) 10146-10151.
DOI URL |
[310] | E. Mugunthan, M.B. Saidutta, P.E. Jagadeeshbabu, J. Photochem. Photobiol. A-Chem. 383 (2019) 111993. |
[311] | G. Palanisamy, K. Bhuvaneswari, G. Bharathi, D. Nataraj, T. Pazhanivel, Chem-istrySelect 3 (2018) 9422-9430. |
[312] |
S. Adhikari, K. Sarath Chandra, D.H. Kim, G. Madras, D. Sarkar, Adv. Powder Technol. 29 (2018) 1591-1600.
DOI URL |
[313] |
W. Xiao, W.T. Liu, X.H. Mao, H. Zhu, D.H. Wang, J. Mater. Chem. A 1 (2013) 1261-1269.
DOI URL |
[314] |
J.Y. Luo, Z. Cao, F. Chen, L. Li, Y.R. Lin, B.W. Liang, Q.G. Zeng, M. Zhang, X. He, C. Li, Appl. Surf. Sci. 287 (2013) 270-275.
DOI URL |
[315] | J.Y. Luo, Y.R. Lin, B.W. Liang, Y.D. Li, X.W. Mo, Q.G. Zeng, RSC Adv. 5 (2015) 100898-100904. |
[316] |
S. Adhikari, S. Mandal, D. Sarkar, D.H. Kim, G. Madras, Appl. Surf. Sci. 420 (2017) 472-482.
DOI URL |
[317] |
K. Adachi, K. Watanabe, S. Yamazaki, Ind. Eng. Chem. Res. 53 (2014) 13046-13057.
DOI URL |
[318] | K.S. Novoselov, V.I. Fal_ ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature 490 (2012) 192-200. |
[319] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666-669.
PMID |
[320] |
M. Telychko, P. Mutombo, P. Merino, P. Hapala, M. Ondráček, F.C. Bocquet, J. Sforzini, O. Stetsovych, M. Vondráček, P. Jelínek, M. Švec, ACS Nano 9 (2015) 9180-9187.
DOI PMID |
[321] |
K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Nanoscale 5 (2013) 3149-3171.
DOI URL |
[322] |
O.G. Apul, Q. Wang, Y. Zhou, T. Karanfil, Water Res. 47 (2013) 1648-1654.
DOI URL |
[323] |
K. Gupta, O.P. Khatri, J. Colloid Interface Sci. 501 (2017) 11-21.
DOI URL |
[324] |
S.M. Maliyekkal, T.S. Sreeprasad, D. Krishnan, S. Kouser, A.K. Mishra, U.V. Waghmare, T. Pradeep, Small 9 (2013) 273-283.
DOI URL |
[325] |
Y. Cheng, Y.Q. Fan, Y. Pei, M.H. Qiao, Catal. Sci. Technol. 5 (2015) 3903-3916.
DOI URL |
[326] |
R. Gusain, H.P. Mungse, N. Kumar, T.R. Ravindran, R. Pandian, H. Sugimura, O.P. Khatri, J. Mater. Chem. A 4 (2016) 926-937.
DOI URL |
[327] |
R.K. Upadhyay, N. Soin, S.S. Roy, RSC Adv. 4 (2014) 3823-3851.
DOI URL |
[328] |
P.K. Boruah, B. Sharma, N. Hussain, M.R. Das, Chemosphere 168 (2017) 1058-1067.
DOI PMID |
[329] |
V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, ACS Nano 4 (2010) 3979-3986.
DOI URL |
[330] |
F. He, J.T. Fan, D. Ma, L.M. Zhang, C. Leung, H.L. Chan, Carbon 48 (2010) 3139-3144.
DOI URL |
[331] |
T. Tachikawa, M. Fujitsuka, T. Majima, J. Phys. Chem. C 111 (2007) 5259-5275.
DOI URL |
[1] | Xuefeng Tao, Zhao Yang, Menghao Cheng, Rui Yan, Fan Chen, Sujiao Cao, Shuang Li, Tian Ma, Chong Cheng, Wei Yang. Phosphorus modulated porous CeO2 nanocrystallines for accelerated polysulfide catalysis in advanced Li-S batteries [J]. J. Mater. Sci. Technol., 2022, 131(0): 212-220. |
[2] | Yuanyuan Zhang, Li Guo, Yingxian Wang, Tianyu Wang, Taoxia Ma, Zhuangzhuang Zhang, Danjun Wang, Bin Xu, Feng Fu. In-situ anion exchange based Bi2S3/OV-Bi2MoO6 heterostructure for efficient ammonia production: A synchronized approach to strengthen NRR and OER reactions [J]. J. Mater. Sci. Technol., 2022, 110(0): 152-160. |
[3] | Libo Wang, Xingang Fei, Liuyang Zhang, Jiaguo Yu, Bei Cheng, Yuhua Ma. Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst [J]. J. Mater. Sci. Technol., 2022, 112(0): 1-10. |
[4] | Zu Guannan, Xu Shiyu, Wang Changhao, Li Hongyi, Zhang Manchen, Ke Xiaoxing, Hu Yuxiang, Wang Ruzhi, Wang Jinshu. Unraveling structure evolution failure mechanism in MoS2 anode for improving lithium storage stability [J]. J. Mater. Sci. Technol., 2022, 128(0): 245-253. |
[5] | Lulu Zhang, Junchen Luo, Shu Zhang, Jun Yan, Xuewu Huang, Ling Wang, Jiefeng Gao. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 98(0): 62-71. |
[6] | Hao Guo, Shufeng Yang, Tiantian Wang, Hang Yuan, Yanling Zhang, Jingshe Li. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition [J]. J. Mater. Sci. Technol., 2022, 99(0): 277-287. |
[7] | Chunmei Li, Jinyong Wang, Dongyang Li, Nasir Ilyas, Zhiqiang Yang, Kexin Chen, Peng Gu, Xiangdong Jiang, Deen Gu, Fucai Liu, Yadong Jiang, Wei Li. An oxide-based heterojunction optoelectronic synaptic device with wideband and rapid response performance [J]. J. Mater. Sci. Technol., 2022, 123(0): 159-167. |
[8] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
[9] | Long Sun, Lingling Li, Jiajie Fan, Quanlong Xu, Dekun Ma. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation [J]. J. Mater. Sci. Technol., 2022, 123(0): 41-48. |
[10] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
[11] | Jie Xiong, Hong-Yan Zeng, Sheng Xu, Jin-Feng Peng, Fang-Yuan Liu, Li-Hui Wang. Enhancing the intrinsic properties of flower-like BiOI by S-doping toward excellent photocatalytic performances [J]. J. Mater. Sci. Technol., 2022, 118(0): 181-189. |
[12] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[13] | Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres [J]. J. Mater. Sci. Technol., 2022, 103(0): 232-243. |
[14] | Sepideh Pourhashem, Abdolvahab Seif, Farhad Saba, Elham Garmroudi Nezhad, Xiaohong Ji, Ziyang Zhou, Xiaofan Zhai, Majid Mirzaee, Jizhou Duan, Alimorad Rashidi, Baorong Hou. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies [J]. J. Mater. Sci. Technol., 2022, 118(0): 73-113. |
[15] | Tianqi Guo, Sašo Ivanovski, Karan Gulati. Fresh or aged: Short time anodization of titanium to understand the influence of electrolyte aging on titania nanopores [J]. J. Mater. Sci. Technol., 2022, 119(0): 245-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||