J. Mater. Sci. Technol. ›› 2022, Vol. 126: 169-181.DOI: 10.1016/j.jmst.2022.03.018
Special Issue: Ni-based alloys 2022
• Research Article • Previous Articles Next Articles
R.Y. Zhang*(
), H.L. Qin, Z.N. Bic, Y.T. Tangd, J. Araújo de Oliveirae, T.L. Leef, C. Panwisawasb, S.Y. Zhanga, J. Zhangc, J. Lig, H.B. Dongb,*(
)
Received:2022-01-28
Revised:2022-03-14
Accepted:2022-03-16
Published:2022-11-01
Online:2022-11-10
Contact:
R.Y. Zhang,H.B. Dong
About author:hd38@le.ac.uk(H.B. Dong).R.Y. Zhang, H.L. Qin, Z.N. Bi, Y.T. Tang, J. Araújo de Oliveira, T.L. Lee, C. Panwisawas, S.Y. Zhang, J. Zhang, J. Li, H.B. Dong. γ″ variant-sensitive deformation behaviour of Inconel 718 superalloy[J]. J. Mater. Sci. Technol., 2022, 126: 169-181.
| C | Cr | Nb | Ti | Al | Mo | Fe | Ni |
|---|---|---|---|---|---|---|---|
| 0.023 | 18.05 | 5.42 | 0.91 | 0.48 | 2.90 | 18.00 | Bal. |
Table 1. Chemical composition of IN718 alloy (in wt.%).
| C | Cr | Nb | Ti | Al | Mo | Fe | Ni |
|---|---|---|---|---|---|---|---|
| 0.023 | 18.05 | 5.42 | 0.91 | 0.48 | 2.90 | 18.00 | Bal. |
Fig. 3. (a) IPF along the z-axis on the cross-section of the TA sample, (b)-(d) γ″ variant distribution in grains selected from locations indicated in (a), (e) IPF on the cross-section of the CA sample, (f)-(h) γ″ variant distribution in grains selected from locations indicated in (e). Insets show the orientation of existing γ″ variants (indicated as either coloured ellipse or circle) with habit planes lying on different faces of the grey cube according to the {100}γ″//{100}γ and [100]γ″//<100>γ relationship with the matrix phase.
Fig. 4. Diffraction patterns obtained along the loading direction at room temperature (RT) before loading both tensile-aged (TA) and compressive-aged (CA) samples. Small {116}, {204}, and {004} γ″ peaks are discerned in TA sample but not in CA sample.
Fig. 5. Schematic illustration of diffraction from an <100> oriented grain in TA and CA samples, respectively, viewing along the transverse direction of the bar sample. Non-overlapping {004} γ″ peak is contributed from the variant with a c-axis parallel to the diffraction vector while the {200} overlapping peak is from the variant with an a-axis parallel to the diffraction vector.
Fig. 6. Fitting of diffraction peaks for (a)-(c) non-overlapping peaks for TA sample, and deconvolution results for (d)-(f) overlapping peak for CA sample, showing the accuracy of the fitting.
Fig. 7. Stress-lattice strain plots for each hkl reflection of both the γ and γ″ phases in the elastic regime. (a)-(c) for TA sample, (d)-(f) for CA sample. Diffraction elastic constants were obtained by linearly fitting to each of the plots. It is shown that the γ″ is stiffer along its c-axis (<004> direction) than a-axis (<200> direction), as well as stiffer than the matrix phase. Errors bars associated with the fitting uncertainties are about the size of the symbol and are not shown for clarity.
| hkl of γ″ | 312 (CA) | 116 (TA) | 220 (CA) | 204 (TA) | 200 (CA) | 004 (TA) |
|---|---|---|---|---|---|---|
| Ehkl (GPa) | 215 | 246 | 227 | 214 | 164 | 225 |
| Uncertainty (GPa) | 13 | 22 | 24 | 18 | 2 | 22 |
Table 2. Diffraction elastic constant for each hkl reflection of the γ″ phase, uncertainties associated with the linear fitting are given. hkl reflections for the TA sample are indicated as (TA) while for the CA sample are indicated as (CA).
| hkl of γ″ | 312 (CA) | 116 (TA) | 220 (CA) | 204 (TA) | 200 (CA) | 004 (TA) |
|---|---|---|---|---|---|---|
| Ehkl (GPa) | 215 | 246 | 227 | 214 | 164 | 225 |
| Uncertainty (GPa) | 13 | 22 | 24 | 18 | 2 | 22 |
| hkl of γ | 311 (CA) | 311 (TA) | 220 (CA) | 220 (TA) | 200 (CA) | 200 (TA) |
|---|---|---|---|---|---|---|
| Ehkl (GPa) | 200 | 189 | 229 | 226 | 165 | 157 |
| Uncertainty (GPa) | 2 | 2 | 5 | 2 | 2 | 3 |
Table 3. Diffraction elastic constant for each hkl reflection of the γ phase, uncertainties associated with the linear fitting are given.
| hkl of γ | 311 (CA) | 311 (TA) | 220 (CA) | 220 (TA) | 200 (CA) | 200 (TA) |
|---|---|---|---|---|---|---|
| Ehkl (GPa) | 200 | 189 | 229 | 226 | 165 | 157 |
| Uncertainty (GPa) | 2 | 2 | 5 | 2 | 2 | 3 |
Fig. 8. Applied stress-strain curves for quasi-static in situ neutron tensile deformation and in-house laboratory tensile deformation of the two differently aged samples. The ‘x’ marker shows the point where the extensometer slipped.
| Empty Cell | 0.2% yield strength (MPa) | Tensile strength (MPa) |
|---|---|---|
| TA - Neutron | 990 | 1289 |
| CA - Neutron | 1095 | 1342 |
| TA - In house | 910 | 1245 |
| CA - In house | 1000 | 1322 |
Table 4. Summary of 0.2% yield strength and tensile strength of the two differently aged samples tested by in situ neutron diffraction experiment and in-house tensile experiment.
| Empty Cell | 0.2% yield strength (MPa) | Tensile strength (MPa) |
|---|---|---|
| TA - Neutron | 990 | 1289 |
| CA - Neutron | 1095 | 1342 |
| TA - In house | 910 | 1245 |
| CA - In house | 1000 | 1322 |
Fig. 9. Evolution of hkl-specific lattice strain of the γ phase along the longitudinal direction for (a) TA and (b) CA samples. The horizontal lines indicate the onsets of nonlinearity, which coincide with the 0.2% yield strength obtained from macro stress-strain curves. The error bars associated with uncertainties from peak fitting are about the size of the symbol and are not shown here for clarity.
Fig. 10. Lattice strain evolution of the γ and γ″ phases for (a) TA and (b) CA samples during tensile deformation. The horizontal lines indicate the onsets of nonlinearity. Error bars associated with uncertainties of peak fitting are about the size of the symbol in the elastic regime for both phases, and increase from 200 to 1200 microstrains in the plastic regime for the γ″, 100 to 360 microstrains for the γ phase. Error bars are not shown for clarity.
Fig. 11. Evolution of normalized peak broadening of the γ and γ″ phases in the {200} and {220} oriented grains for the (a) TA and (b) CA samples. And peak intensity evolution for (c) TA and (d) CA samples. Error bars for peak width associated with uncertainties of peak fitting are about the size of the symbol in the elastic regime and increase from 0.07 to 0.44 in the plastic regime for both phases. Error bars for peak intensity are about the size of the symbol. Error bars are not shown for clarity.
Fig. 12. Schematic illustrations of active dislocations (arrows in blue and red) and existing γ″ variants in grains oriented with [011] parallel to loading direction in the (a) TA sample and (b) CA sample.
| G [ | b [ | f [ | ε [ | R [ | h [ | β |
|---|---|---|---|---|---|---|
| 70 GPa | 0.254 nm | 0.08 | 0.031 | 28 nm | 6.1 nm | ½ or 1 |
Table 5. Parameters for the calculation of CRSS increment.
| G [ | b [ | f [ | ε [ | R [ | h [ | β |
|---|---|---|---|---|---|---|
| 70 GPa | 0.254 nm | 0.08 | 0.031 | 28 nm | 6.1 nm | ½ or 1 |
| [1] | R.C. Reed, The Superalloys: Fundamentals and Applications, 1st Cambridge University Press, Cambridge (2006). |
| [2] | M.J. Donachie, S.J. Donachie, Superalloys:A Technical Guide Second Edition ASM International, Materials Park, US (2002). |
| [3] | Y.L. Kuo, A. Kamigaichi, K. Kakehi, Metall. Mater. Trans. A., 49 (2018), pp. 3831-3837. |
| [4] | S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee, R.R. Dehoff, Metall. Mater. Trans. A., 49 (2018), pp. 3764-3780. |
| [5] | H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci. Technol., 34 (2018), pp. 1799-1804. |
| [6] | H.H. Yang, G.Y. Jing, P. Gao, Z.M. Wang, X.Y. Li, J. Mater. Sci. Technol., 51 (2020), pp. 137-150. |
| [7] | J.M. Oblak, D.S. Duvall, D.F. Paulonis, Mater.Sci. Eng., 13 (1974), pp. 51-56. |
| [8] | J.M. Oblak, D.F. Paulonis, D.S. Duvall, Metall. Trans., 5 (1974), p. 143. |
| [9] | M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Acta Metall, 36 (1988), pp. 847-864. |
| [10] | M.C. Chaturvedi, Y.F. Han, Met. Sci., 17 (1983), pp. 145-149. |
| [11] | N. Zhou, D.C. Lv, H.L. Zhang, D. McAllister, F. Zhang, M.J. Mills, Y. Wang, Acta Mater, 65 (2014), pp. 270-286. |
| [12] | D. McAllister, D.C. Lv, B. Peterson, H. Deutchman, Y. Wang, M.J. Mills, Scr. Mater., 115 (2016), pp. 108-112. |
| [13] | D.C. Lv, D. McAllister, M.J. Mills, Y. Wang, Acta Mater, 118 (2016), pp. 350-361. |
| [14] | D. McAllister, D.C. Lv, L. Feng, H. Deutchman, A. Wessman, Y. Wang, E. Ott, X. Liu, J. Andersson, Z. Bi, K. Bockenstedt, I. Dempster, J. Groh, K. Heck, P. Jablonski, M. Kaplan, D. Nagahama, C. Sudbrack (M.J. Mills Eds.,Eds.), Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives:Energy, Aerospace, and Industrial Applications, Cambridge, Springer International Publishing (2018), pp. 319-338. |
| [15] | H.L. Qin, Z.N. Bi, H.Y. Yu, G. Feng, R.Y. Zhang, X. Guo, H. Chi, J.H. Du, J. Zhang, Mater.Sci. Eng. A, 728 (2018), pp. 183-195. |
| [16] | H.L. Qin, Z.N. Bi, R.Y. Zhang, T.L. Lee, H. Yu, H.Y. Chi, D. Li, H.B. Dong, J.H. Du, J. Zhang, , in: S. Tin, M.Hardy, J.Clews, J.Cormier, Q.Feng, J.Marcin, C.O'Brien, A.Suzuki(Eds.), Superalloys 2020, Springer International Publishing, Cambridge, 2020, pp. 713-725. |
| [17] | H.J. Zhang, C. Li, Q.Y. Guo, Z.Q. Ma, H.J. Li, Y.C. Liu, Scr. Mater., 164 (2019), pp. 66-70. |
| [18] | Q. Zhu, G. Chen, C.J. Wang, L.K. Cheng, H.Y. Qin, P. Zhang, J. Mater. Sci. Technol., 47 (2020), pp. 177-189. |
| [19] | S.Y. Huang, Y.F. Gao, K. An, L.L. Zheng, W. Wu, Z.K. Teng, P.K. Liaw, Acta Mater, 83 (2015), pp. 137-148. |
| [20] | B.M.B. Grant, E.M. Francis, J.Q. da Fonseca, M.R. Daymond, M. Preuss, Acta Mater, 60 (2012), pp. 6829-6841. |
| [21] | D. Dye, H.J. Stone, R.C. Reed, Acta Mater, 49 (2001), pp. 1271-1283. |
| [22] | H.J. Stone, T.M. Holden, R.C. Reed, Acta Mater, 47 (1999), pp. 4435-4448. |
| [23] | B. Clausen, T. Lorentzen, M.A.M. Bourke, M.R. Daymond, Mater.Sci. Eng. A, 259 (1999), pp. 17-24. |
| [24] | B. Clausen, T. Lorentzen, T. Leffers, Acta Mater, 46 (1998), pp. 3087-3098. |
| [25] | B. Clausen, T. Lorentzen, Metall. Mater. Trans. A, 28 (1997), pp. 2537-2541. |
| [26] | J. Cormier, P. Gadaud, M. Czaplicki, R.Y. Zhang, H.B. Dong, T.M. Smith, F. Zhang, J.S. Tiley, S.L. Metall, Mater. Trans. A (2020), pp. 500-511. |
| [27] | S.L. Semiatin, J.S. Tiley, F. Zhang, T.M. Smith, R.Y. Zhang, H.B. Dong, P. Gadaud, J. Cormier, Metall. Mater. Trans. A, 52 (2021), pp. 483-499. |
| [28] | H.J. Li, G.A. Sun, W. Woo, J. Gong, B. Chen, Y.D. Wang, Y.Q. Fu, C.Q. Huang, L. Xie, S.M. Peng, J. Nucl. Mater., 446 (2014), pp. 134-141. |
| [29] | E.W. Huang, R.I. Barabash, Y. Wang, B. Clausen, L. Li, P.K. Liaw, G.E. Ice, Y. Ren, H. Choo, L.M. Pike, D.L. Klarstrom, Int. J. Plast., 24 (2008), pp. 1440-1456. |
| [30] | R.Y. Zhang, H.L. Qin, Z.N. Bi, J. Li, S. Paul, T.L. Lee, B. Nenchev, J. Zhang, S. Kabra, J.F. Kelleher, H.B. Dong, Metall. Mater. Trans. A, 50 (2019), pp. 5421-5432. |
| [31] | R.Y. Zhang, H.L. Qin, Z.N. Bi, J. Li, S. Paul, T.L. Lee, S.Y. Zhang, J. Zhang, H.B. Dong, Metall. Mater. Trans. A (2020), pp. 1860-1873. |
| [32] | R.Y. Zhang, H.L. Qin, Z.N. Bi, J. Li, S. Paul, T.L. Lee, S.Y. Zhang, J. Zhang, H.B. Dong, Metall. Mater. Trans. A (2019), pp. 574-585. |
| [33] | W.F. Hosford, S.P. Agrawal, Metall. Trans. A, 6 (1975), p. 487. |
| [34] | A. Pineau, Acta Metall, 24 (1976), pp. 559-564. |
| [35] | M. Gao, D.G. Harlow, R.P. Wei, S.C. Chen, Metall. Mater. Trans. A, 27 (1996), pp. 3391-3398. |
| [36] | D.Y. Li, L.Q. Chen, Acta Mater, 45 (1997), pp. 471-479. |
| [37] | J.R. Santisteban, M.R. Daymond, J.A. James, L. Edwards, J. Appl. Crystallogr., 39 (2006), pp. 812-825. |
| [38] | K. Kulawik, P.A. Buffat, A. Kruk, A.M. Wusatowska-Sarnek, A. Czyrska-Filemonowicz, Mater. Charact., 100 (2015), pp. 74-80. |
| [39] | R.B. Li, M. Yao, W.C. Liu, X.C. He, Scr. Mater., 46 (2002), pp. 635-638. |
| [40] | M.T. Hutchings, P.J. Withers, T.M. Holden, T. Lorentzen, Taylor & Francis, Boca Raton, Florida, 2005. |
| [41] | D.M. Collins, N. D'Souza, C. Panwisawas, Scr. Mater., 131 (2017), pp. 103-107. |
| [42] | N. D'Souza, J. Kelleher, C. Qiu, S.Y. Zhang, S. Gardner, R.E. Jones, D. Putman, C. Panwisawas, Acta Mater, 106 (2016), pp. 322-332. |
| [43] | A. Niang, J. Huez, J. Lacaze, B. Viguier, Mater. Sci. Forum., 636-637 (2010), pp. 517-522. |
| [44] | V. Gerold, H. Haberkorn, Phys. Status Solidi, 16 (1966), pp. 675-684. |
| [1] | Y. Xing, C.J. Li, Y.K. Mu, Y.D. Jia, K.K. Song, J. Tan, G. Wang, Z.Q. Zhang, J.H. Yi, J. Eckert. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy [J]. J. Mater. Sci. Technol., 2023, 132(0): 119-131. |
| [2] | X.S. Liu, R. Li, X.F. Fan, Q.Q. Liu, X. Tong, A.X. Li, S. Xu, H. Yang, S.B. Yu, M.H. Jiang, C. Huo, P.F. Yu, M.T. Dove, G. Li. Excellent strength-ductility combination in Co36Cr15Fe18Ni18Al8Ti4Mo1 multi-principal element alloys by dual-morphology B2 precipitates strengthening [J]. J. Mater. Sci. Technol., 2023, 134(0): 60-66. |
| [3] | Bailing An, Rongmei Niu, Yan Xin, William L. Starch, Zhaolong Xiang, Yifeng Su, Robert E. Goddard, Jun Lu, Theo M. Siegrist, Engang Wang, Ke Han. Suppression of discontinuous precipitation and strength improvement by Sc doping in Cu-6 wt%Ag alloys [J]. J. Mater. Sci. Technol., 2023, 135(0): 80-96. |
| [4] | Mujin Yang, Chao Huang, Jiajia Han, Haichen Wu, Yilu Zhao, Tao Yang, Shenbao Jin, Chenglei Wang, Zhou Li, Ruiying Shu, Cuiping Wang, Huanming Lu, Gang Sha, Xingjun Liu. Development of the high-strength ductile ferritic alloys via regulating the intragranular and grain boundary precipitation of G-phase [J]. J. Mater. Sci. Technol., 2023, 136(0): 180-199. |
| [5] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
| [6] | Qi Zhu, Haofei Zhou, Yingbin Chen, Guang Cao, Chuang Deng, Ze Zhang, Jiangwei Wang. Atomistic dynamics of disconnection-mediated grain boundary plasticity: A case study of gold nanocrystals [J]. J. Mater. Sci. Technol., 2022, 125(0): 182-191. |
| [7] | Kesong Miao, Meng Huang, Yiping Xia, Hao Wu, Qing Liu, Guohua Fan. Unexpected de-twinning of strongly-textured Ti mediated by local stress [J]. J. Mater. Sci. Technol., 2022, 125(0): 231-237. |
| [8] | Xiang Peng, Wencai Liu, Guohua Wu, Hao Ji, Wenjiang Ding. Plastic deformation and heat treatment of Mg-Li alloys: a review [J]. J. Mater. Sci. Technol., 2022, 99(0): 193-206. |
| [9] | Eun-Ae Choi, Seung Zeon Han, Hyung Giun Kim, Jee Hyuk Ahn, Sung Hwan Lim, Sangshik Kim, Nong-Moon Hwang, Kwangho Kim, Jehyun Lee. Coherent interface driven super-plastic elongation of brittle intermetallic nano-fibers at room temperature [J]. J. Mater. Sci. Technol., 2022, 115(0): 97-102. |
| [10] | Xuli Liu, Yidong Wu, Yansong Wang, Jinbin Chen, Rui Bai, Lei Gao, Zhe Xu, William Yi Wang, Chengwen Tan, Xidong Hui. Enhanced dynamic deformability and strengthening effect via twinning and microbanding in high density NiCoFeCrMoW high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 127(0): 164-176. |
| [11] | C. Yang, M.Q. Li, Y.G. Liu. Characterization of face-centered cubic structure and deformation mechanisms in high energy shot peening process of TC17 [J]. J. Mater. Sci. Technol., 2022, 110(0): 136-151. |
| [12] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
| [13] | L. Tang, F.Q. Jiang, J.S. Wróbel, B. Liu, S. Kabra, R.X. Duan, J.H. Luan, Z.B. Jiao, M.M. Attallah, D. Nguyen-Manh, B. Cai. In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 116(0): 103-120. |
| [14] | Bin Zhu, Nathanael Leung, Winfried Kockelmann, Andrew J. London, Michael Gorley, Mark J. Whiting, Yiqiang Wang, Tan Sui. Revealing the residual stress distribution in laser welded Eurofer97 steel by neutron diffraction and Bragg edge imaging [J]. J. Mater. Sci. Technol., 2022, 114(0): 249-260. |
| [15] | Daixiu Wei, Wu Gong, Liqiang Wang, Bowen Tang, Takuro Kawasaki, Stefanus Harjo, Hidemi Kato. Strengthening of high-entropy alloys via modulation of cryo-pre-straining-induced defects [J]. J. Mater. Sci. Technol., 2022, 129(0): 251-260. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
