J. Mater. Sci. Technol. ›› 2022, Vol. 126: 161-168.DOI: 10.1016/j.jmst.2022.03.019
• Research Article • Previous Articles Next Articles
Song Yanga, Shujie Jiaoa,*(
), Yiyin Niea, Tanjun Jianga, Hongliang Lua, Shuo Liua, Yue Zhaoa, Shiyong Gaoa, Dongbo Wanga, Jinzhong Wanga, Yongfeng Lib
Received:2021-12-07
Revised:2022-03-16
Accepted:2022-03-21
Published:2022-11-01
Online:2023-04-10
Contact:
Shujie Jiao
Song Yang, Shujie Jiao, Yiyin Nie, Tanjun Jiang, Hongliang Lu, Shuo Liu, Yue Zhao, Shiyong Gao, Dongbo Wang, Jinzhong Wang, Yongfeng Li. Research Article Facile synthesis of bismuth nanoparticles for efficient self-powered broadband photodetector application[J]. J. Mater. Sci. Technol., 2022, 126: 161-168.
Fig. 1. (a) Experimental and calculated XRD patterns of bismuth, (b) schematic diagram of the hexagonal crystal structure of bismuth, (c) high-magnification SEM image of bismuth nanoparticles, (d) EDS spectrum of bismuth nanoparticles.
Fig. 3. (a) Room-temperature Raman spectrum of bismuth nanoparticles, (b) UV-Vis absorption spectrum of bismuth nanoparticles in ethanol. (c) and (d) Band structure of bismuth nanoparticles based on density functional theory (DFT) calculations.
Fig. 4. (a) Schematic diagram of the PEC-type self-powered broadband photodetector based on bismuth nanoparticles, (b) current-voltage curves of bismuth photodetector in the dark and various light sources with an incident power of 10 mW/cm2, (c) responsivity spectrum of bismuth photodetector in the wavelength range of 200-1100 nm at zero bias, (d) photoresponse curves of the bismuth photodetector under light illumination with a wavelength of 470 nm and an incident power of 5-30 mW/cm2, (e) incident power-dependent specific detectivity and net photocurrent of the bismuth photodetector under light illumination with a wavelength of 470 nm and an incident power of 5-30 mW/cm2, (f) amplified response time spectrum of the bismuth photodetector under light illumination with a wavelength of 470 nm.
Fig. 5. (a) Photoresponse curves of bismuth photodetector under the illumination of various light sources with an incident power of 10 mW/cm2, (b) current and on/off ratio of the bismuth photodetector under the illumination of various light sources with an incident power of 10 mW/cm2. (c) Stability measurement of photodetectors based on fresh bismuth nanoparticles and bismuth nanoparticles stored in the air atmosphere for two months under the light illumination with a wavelength of 470 nm and an incident power of 10 mW/cm2, respectively, (d) partially magnified image of the stability measurement for photodetectors based on fresh bismuth nanoparticles and bismuth nanoparticles stored in the air atmosphere for two months.
| Materials | Methods | Device | Light source /Spectral range (nm) | Responsivity (mA/W) | Rise/decay time (ms) | Refs. |
|---|---|---|---|---|---|---|
| Bismuth NPs | Solvothermal | PEC | 365-850 | 4.979 (0 V) | < 12/< 46 | This work |
| Bismuth films | PLD | MSM | 370-1550 nm | 250 (2 V) | 900/1900 | [ |
| Bismuth NS | Liquid-phase exfoliation | PEC | optical-fiber source | 0.0018 (0.5 V) | 900/380 | [ |
| Bismuth QDs | Liquid-phase exfoliation | PEC | 350-400 | 0.0193 (0 V) | 100/200 | [ |
| Bismuth NS | Liquid-phase exfoliation | PEC | xenon arc lamp | 0.0005 (0 V) | 3300/1800 | [ |
| Bismuth films | Vapor deposition | MSM | 405-1064 | 4.776 (0 V) | 30/14 | [ |
Table 1. Comparison of main parameters of current photodetectors based on element bismuth.
| Materials | Methods | Device | Light source /Spectral range (nm) | Responsivity (mA/W) | Rise/decay time (ms) | Refs. |
|---|---|---|---|---|---|---|
| Bismuth NPs | Solvothermal | PEC | 365-850 | 4.979 (0 V) | < 12/< 46 | This work |
| Bismuth films | PLD | MSM | 370-1550 nm | 250 (2 V) | 900/1900 | [ |
| Bismuth NS | Liquid-phase exfoliation | PEC | optical-fiber source | 0.0018 (0.5 V) | 900/380 | [ |
| Bismuth QDs | Liquid-phase exfoliation | PEC | 350-400 | 0.0193 (0 V) | 100/200 | [ |
| Bismuth NS | Liquid-phase exfoliation | PEC | xenon arc lamp | 0.0005 (0 V) | 3300/1800 | [ |
| Bismuth films | Vapor deposition | MSM | 405-1064 | 4.776 (0 V) | 30/14 | [ |
| [1] |
W. Yang, K. Hu, F. Teng, J.H. Weng, Y. Zhang, X.S. Fang, Nano Lett., 18 (2018), pp. 4697-4703.
DOI PMID |
| [2] |
J.M. Hu, S.Y. Yang, Z.H. Zhang, H.L. Li, C.P. Veeramalai, M. Sulaman, M.I. Saleem, Y. Tang, Y.R. Jiang, L.B. Tang, B.S. Zou, J. Mater. Sci. Technol., 68 (2021), pp. 216-226.
DOI URL |
| [3] |
D.T. You, C.X. Xu, W. Zhang, J. Zhao, F.F. Qin, Z.L. Shi, Nano Energy, 62 (2019), pp. 310-318.
DOI URL |
| [4] |
J.D. Yao, J.M. Shao, Y.X. Wang, Z.R. Zhao, G.W. Yang, Nanoscale, 7 (2015), pp. 12535-12541.
DOI URL |
| [5] | Y. Xie, B. Zhang, S.X. Wang, D. Wang, A.Z. Wang, Z.Y. Wang, H.H. Yu, H.J. Zhang, Y.X. Chen, M.W. Zhao, B.B. Huang, L.M. Mei, J.Y. Wang, Adv. Mater., 29 (2017), Article 1605972. |
| [6] |
P. Wan, M.M. Jiang, T. Xu, Y. Liu, C.X. Kan, J. Mater. Sci. Technol., 93 (2021), pp. 33-40.
DOI URL |
| [7] |
Y.H. Chen, L.X. Su, M.M. Jiang, X.S. Fang, J. Mater. Sci. Technol., 105 (2022), pp. 259-265.
DOI URL |
| [8] |
X. Hu, X.D. Zhang, L. Liang, J. Bao, S. Li, W.L. Yang, Y. Xie, Adv. Funct. Mater., 24 (2014), pp. 7373-7380.
DOI URL |
| [9] |
H.W. Liu, X.L. Zhu, X.X. Sun, C.G. Zhu, W. Huang, X.H. Zhang, B.Y. Zheng, Z.X. Zou, Z.Y. Luo, X. Wang, D. Li, A.L. Pan, ACS Nano, 13 (2019), pp. 13573-13580.
DOI URL |
| [10] | J. Jeon, H. Choi, S. Choi, J.H. Park, B.H. Lee, E. Hwang, S. Lee, Adv. Funct. Mater., 29 (2019), Article 1905384. |
| [11] | M. Vemula, S. Veeralingam, S. Badhulika, J. Alloy. Compd., 883 (2021), Article 160826. |
| [12] |
M. Patel, P.M. Pataniya, V. Patel, C.K. Sumesh, D.J. Late, Sol. Energy, 206 (2020), pp. 974-982.
DOI URL |
| [13] | T.C. Jiang, Y.S. Huang, X.Q. Meng, Appl. Surf. Sci., 513 (2020), Article 145813. |
| [14] | N. Hussain, T. Liang, Q.Y. Zhang, T. Anwar, Y. Huang, J.J. Lang, K. Huang, H. Wu, Small, 13 (2017), Article 1701349. |
| [15] |
A.J. Mannix, B. Kiraly, M.C. Hersam, N.P. Guisinger, Nat. Rev. Chem., 1 (2017), pp. 1-14.
DOI URL |
| [16] |
F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, R. Claessen, Science, 357 (2017), pp. 287-290.
DOI PMID |
| [17] | M.M. Zhao, Y.L. Gu, W.C. Gao, P.X. Cui, H. Tang, X.Y. Wei, H. Zhu, G.Q. Li, S.C. Yan, X.Y. Zhang, Z.G. Zou, Appl. Catal. B-Environ., 266 (2020), Article 118625. |
| [18] |
W.J. Zhang, Y. Hu, L.B. Ma, G.Y. Zhu, P.Y. Zhao, X.L. Xue, R.P. Chen, S.Y. Yang, J. Ma, J. Liu, Z. Jin, Nano Energy, 53 (2018), pp. 808-816.
DOI URL |
| [19] |
P.P. Su, W.B. Xu, Y.L. Qiu, T.T. Zhang, X.F. Li, H.M. Zhang, ChemSusChem, 11 (2018), pp. 848-853.
DOI URL |
| [20] |
H.T. Bi, F. He, Y.S. Dong, D. Yang, Y.L. Dai, L.G. Xu, R.C. Lv, S.L. Gai, P.P. Yang, J. Lin, Chem. Mater., 30 (2018), pp. 3301-3307.
DOI URL |
| [21] |
B. Wei, X. Zhang, C. Zhang, Y. Jiang, Y.Y. Fu, C. Yu, S.K. Sun, X.P. Yan, ACS Appl. Mater. Interfaces, 8 (2016), pp. 12720-12726.
DOI URL |
| [22] | J. Yao, J.M. Shao, G.W. Yang, Sci. Rep., 5 (2015), p. 12320. |
| [23] | H. Huang, X.H. Ren, Z.J. Li, H.D. Wang, Z.Y. Huang, H. Qiao, P.H. Tang, J.L. Zhao, W.Y. Liang, Y.Q. Ge, J. Liu, J.Q. Li, X. Qi, H. Zhang, Nanotechnology, 29 (2018), Article 235201. |
| [24] |
C.Y. Xing, W.C. Huang, Z.J. Xie, J.L. Zhao, D.T. Ma, T.J. Fan, W.Y. Liang, Y.Q. Ge, B.Q. Dong, J.Q. Li, H. Zhang, ACS Photonics, 5 (2018), pp. 621-629.
DOI URL |
| [25] | B. Wang, Y. Zhou, Z. Huang, H. Qiao, C. Duan, X. Ren, Z. Wang, J. Zhong, X. Qi, Mater. Today Nano, 14 (2021), Article 100109. |
| [26] |
Q.Q. Zhou, D.L. Lu, H. Tang, S.W. Luo, Z.Q. Li, H.X. Li, X. Qi, J.X. Zhong, ACS Appl. Electron. Mater., 2 (2020), pp. 1254-1262.
DOI URL |
| [27] |
M. Yarema, M.V. Kovalenko, G. Hesser, D.V. Talapin, W. Heiss, J. Am. Chem. Soc., 132 (2010), pp. 15158-15159.
DOI URL |
| [28] | F. Wang, R. Tang, H. Yu, P.C. Gibbons, W.E. Buhro, Chem. Mater., 20 (2008), pp. 3656-3662. |
| [29] |
S.C. Warren, A.C. Jackson, Z.D. Cater-Cyker, F.J. Disalvo, U. Wiesner, J. Am. Chem. Soc., 129 (2007), pp. 10072-10073.
PMID |
| [30] |
E.R. Swy, A.S. Schwartz-Duval, D.D. Shuboni, M.T. Latourette, C.L. Mallet, M. Parys, D.P. Cormode, E.M. Shapiro, Nanoscale, 6 (2014), pp. 13104-13112.
DOI URL |
| [31] |
X.J. Yu, A. Li, C.Z. Zhao, K. Yang, X.Y. Chen, W.W. Li, ACS Nano, 11 (2017), pp. 3990-4001.
DOI URL |
| [32] | J. Wu, F. Qin, Z. Lu, H.J. Yang, R. Chen, Nanoscale Res. Lett., 6 (2011), p. 66. |
| [33] | X.H. Ren, W.W. Zheng, H. Qiao, L. Ren, S.Q. Liu, Z.Y. Huang, X. Qi, Z.Y. Wang, J.X. Zhong, H. Zhang, Mater. Today Energy, 16 (2020), Article 100401. |
| [34] | X.H. Ren, Z.J. Li, Z.Y. Huang, D. Sang, H. Qiao, X. Qi, J.Q. Li, J.X. Zhong, H. Zhang, Adv. Funct. Mater., 27 (2017), Article 1606834. |
| [35] |
Y.Z. Zhang, H. Chen, Z.L. Li, T. Huang, S.Q. Zheng, J. Cryst. Growth, 421 (2015), pp. 13-18.
DOI URL |
| [36] |
J. Li, H.Q. Fan, J. Chen, L.J. Liu, Colloid. Surface. A, 340 (2009), pp. 66-69.
DOI URL |
| [37] |
J.D. Yao, Z.Q. Zheng, J.M. Shao, G.W. Yang, ACS Appl. Mater. Interface., 7 (2015), pp. 26701-26708.
DOI URL |
| [38] | I. Aguilera, C. Friedrich, S. Blügel, Phys. Rev. B, 91 (2015), Article 125129. |
| [39] | T. Hirahara, N. Fukui, T. Shirasawa, M. Yamada, M. Aitani, H. Miyazaki, M. Matsunami, S. Kimura, T. Takahashi, S. Hasegawa, K. Kobayashi, Phys. Rev. Lett., 109 (2012), Article 227401. |
| [40] | Z. Liu, C.X. Liu, Y.S. Wu, W.H. Duan, F. Liu, J. Wu, Phys. Rev. Lett., 107 (2011), Article 136805. |
| [41] |
J.Z. Xu, H.N. Li, S.F. Fang, K. Jiang, H.Z. Yao, F.E. Fang, F.M. Chen, Y. Wang, Y.M. Shi, J. Mater. Chem. C, 8 (2020), pp. 2102-2108.
DOI URL |
| [42] |
Q. Wei, J.H. Chen, P. Ding, B. Shen, J. Yin, F. Xu, Y.D. Xia, Z.G. Liu, ACS Appl. Mater. Interfaces, 10 (2018), pp. 21527-21533.
DOI URL |
| [43] |
J.L. Liu, H. Wang, X. Li, H. Chen, Z.K. Zhang, W.W. Pan, G.Q. Luo, C.L. Yuan, Y.L. Ren, W. Lei, Appl. Surf. Sci., 484 (2019), pp. 542-550.
DOI |
| [44] | Z. Dang, W. Wang, J. Chen, E.S. Walker, S.R. Bank, D. Akinwande, Z. Ni, L. Tao,2D Mater., 8 (2021), Article 035002. |
| [45] |
Y. Liu, N. Wei, Q. Zeng, J. Han, H. Huang, D. Zhong, F. Wang, L. Ding, J. Xia, H. Xu, Z. Ma, S. Qiu, Q. Li, X. Liang, Z. Zhang, S. Wang, L.M. Peng, Adv. Opt. Mater., 4 (2016), pp. 238-245.
DOI URL |
| [46] |
J.H. Zhang, S.J. Jiao, D.B. Wang, S.M. Ni, S.Y. Gao, J.Z. Wang, J. Mater. Chem. C, 7 (2019), pp. 6867-6871.
DOI URL |
| [47] |
P.C. Shen, C. Su, Y. Lin, A.S. Chou, C.C. Cheng, J.H. Park, M.H. Chiu, A.Y. Lu, H.L. Tang, M.M. Tavakoli, G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang, V. Tung, J. Li, J. Bokor, A. Zettl, C.I. Wu, T. Palacios, L.J. Li, J. Kong, Nature, 593 (2021), pp. 211-217.
DOI |
| [48] | S. Yang, S.J. Jiao, H.L. Lu, S. Liu, Y.Y. Nie, S.Y. Gao, D.B. Wang, J.Z. Wang, Nanotechnology, 32 (2021), Article 435707. |
| [49] |
N. Fu, Z.Y. Bao, Y.L. Zhang, G. Zhang, S. Ke, P. Lin, J. Dai, H. Huang, D.Y. Lei, Nano Energy, 41 (2017), pp. 654-664.
DOI URL |
| [50] |
L. Liang, M. Liu, Z.W. Jin, Q. Wang, H.R. Wang, H. Bian, F. Shi, S.Z. Liu, Nano Lett, 19 (2019), pp. 1796-1804.
DOI PMID |
| [51] |
H. Zhang, M. Kramarenko, J. Osmond, J. Toudert, J. Martorell, ACS Photonics, 5 (2018), pp. 2243-2250.
DOI URL |
| [52] |
H. Kanda, N. Shibayama, A. Uzum, T. Umeyama, H. Imahori, K. Ibi, S. Ito, ACS Appl. Mater. Interfaces, 10 (2018), pp. 35016-35024.
DOI URL |
| [53] |
Y.D. Li, J.W. Wang, Z.X. Deng, Y.Y. Wu, X.M. Sun, D.P. Yu, P.D. Yang, J. Am. Chem. Soc., 123 (2001), pp. 9904-9905.
PMID |
| [54] |
Y.L. Liao, J. Zhang, W.G. Liu, W.X. Que, X.T. Yin, D.N. Zhang, L.H. Tang, W. He, Z.Y. Zhong, H.W. Zhang, Nano Energy, 11 (2015), pp. 88-95.
DOI URL |
| [1] | Tong Xu, Mingming Jiang, Peng Wan, Yang Liu, Caixia Kan, Daning Shi. High-performance self-powered ultraviolet photodetector in SnO2 microwire/p-GaN heterojunction using graphene as charge collection medium [J]. J. Mater. Sci. Technol., 2023, 138(0): 183-192. |
| [2] | Yihan Chen, Longxing Su, Mingming Jiang, Xiaosheng Fang. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection [J]. J. Mater. Sci. Technol., 2022, 105(0): 259-265. |
| [3] | Yaling Wang, Wei Zhu, Yuan Deng, Pengcheng Zhu, Yuedong Yu, Shaoxiong Hu, Ruifeng Zhang. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer [J]. J. Mater. Sci. Technol., 2022, 103(0): 1-7. |
| [4] | Yue Liu, Feng Peng, Guang-Ling Yang, Zhi-Hui Xie, Wenxin Dai, Yuejun Ouyang, Liang Wu, Chuan-Jian Zhong. Coupling a titanium dioxide based heterostructure photoanode with electroless-deposited nickel-phosphorus alloy coating on magnesium alloy for enhanced corrosion protection [J]. J. Mater. Sci. Technol., 2022, 126(0): 252-265. |
| [5] | Tianyan Zhong, Huangxin Li, Tianming Zhao, Hongye Guan, Lili Xing, Xinyu Xue. Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 76(0): 33-40. |
| [6] | Muhammad Imran Saleem, Shangyi Yang, Attia Batool, Muhammad Sulaman, Chandrasekar Perumal Veeramalai, Yurong Jiang, Yi Tang, Yanyan Cui, Libin Tang, Bingsuo Zou. CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors [J]. J. Mater. Sci. Technol., 2021, 75(0): 196-204. |
| [7] | Peng Wan, Mingming Jiang, Tong Xu, Yang Liu, Caixia Kan. High-mobility induced high-performance self-powered ultraviolet photodetector based on single ZnO microwire/PEDOT:PSS heterojunction via slight ga-doping [J]. J. Mater. Sci. Technol., 2021, 93(0): 33-40. |
| [8] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
| [9] | Xiumin Ma, Zheng Ma, Dongzhu Lu, Quantong Jiang, Leilei Li, Tong Liao, Baorong Hou. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light [J]. J. Mater. Sci. Technol., 2021, 64(0): 21-28. |
| [10] | Dapeng Cao, Jingbo Zhang, Anchen Wang, Xiaohui Yu, Baoxiu Mi. Fabrication of Cr-doped SrTiO3/Ti-doped α-Fe2O3 photoanodes with enhanced photoelectrochemical properties [J]. J. Mater. Sci. Technol., 2020, 56(0): 189-195. |
| [11] | Xidong Zhang, Dong Yue, Ling Zhang, Shiwei Lin. Three-dimensional flexible Au nanoparticles-decorated TiO2 nanotube arrays for photoelectrochemical biosensing [J]. J. Mater. Sci. Technol., 2020, 56(0): 162-169. |
| [12] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
| [13] | Changwei Tang, Xiaohui Ning, Jian Li, Hui-Lin Guo, Ying Yang. Modulating conductivity type of cuprous oxide (Cu2O) films on copper foil in aqueous solution by comproportionation [J]. J. Mater. Sci. Technol., 2019, 35(8): 1570-1577. |
| [14] | Linxing Meng, Wei Tian, Fangli Wu, Fengren Cao, Liang Li. TiO2 ALD decorated CuO/BiVO4 p-n heterojunction for improved photoelectrochemical water splitting [J]. J. Mater. Sci. Technol., 2019, 35(8): 1740-1746. |
| [15] | Zize Liu, Tianming Zhao, Hongye Guan, Tianyan Zhong, Haoxuan He, Lili Xing, Xinyu Xue. A self-powered temperature-sensitive electronic-skin based on tribotronic effect of PDMS/PANI nanostructures [J]. J. Mater. Sci. Technol., 2019, 35(10): 2187-2193. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
