J. Mater. Sci. Technol. ›› 2022, Vol. 124: 26-40.DOI: 10.1016/j.jmst.2022.02.017
• Research Article • Previous Articles Next Articles
Romain Fleurisson, Oriane Senninger, Gildas Guillemot(), Charles-André Gandin
Received:
2021-09-30
Revised:
2022-02-07
Accepted:
2022-02-13
Published:
2022-10-10
Online:
2022-03-26
Contact:
Gildas Guillemot
About author:
∗E-mail address: Gildas.Guillemot@mines-paristech.fr (G. Guillemot).Romain Fleurisson, Oriane Senninger, Gildas Guillemot, Charles-André Gandin. Hybrid Cellular Automaton - Parabolic Thick Needle model for equiaxed dendritic solidification[J]. J. Mater. Sci. Technol., 2022, 124: 26-40.
Fig. 1. Parabolic dendrite tip of curvature ρtip and growth velocity vtip truncated by a cylinder of radius rcyl. The yellow area of surface Σ is parametrized by the length a defining a distance behind the tip of the parabola. Blue lines correspond to isovalues of the concentration field in the liquid phase $w_{PTN}^{l}$ computed by solving Eq. (1).
Fig. 2. Illustration of the coupling between the CA and the PTN method. Initialization of a polygon after the capture of a cell μ by the polygon of cell ν.
Fig. 3. Illustration of the CAPTN-FE coupling for a single grain growing at the center of a disc at given time. Arrows correspond to transferred fields. PTN: w P T N l (color), edge of δ P T N s (white line), edge of area where gm=0 (pink line), edge of area where g m = g l i m m (black line). Zoom: PTN mesh at a dendritic tip. CA: state of cells. The white zone in the center corresponds to deallocated cells. FE: all FE fields are displayed on separate images.
Parameter | Variable | Value | Unit | Ref |
---|---|---|---|---|
Nominal composition | w0 | 7 | wt% | |
Melting temperature | TM | 933.6 | K | [ |
Eutectic temperature | Teut | 850.15 | K | [ |
Segregation coefficient | K | 0.13 | [ | |
Liquidus slope | M | -6.5 | K·wt%-1 | [ |
Interdiffusion coefficient in liquid | Dl | 3×10-9 | m2·s-1 | [ |
Gibbs-Thomson coefficient | Γls | 1.96×10-7 | K·m | [ |
Selection parameter | σ | 1/(4π2) | [ | |
Volumetric latent heat | LM | 9.5×108 | J·m-3 | [ |
Volumetric heat capacity | Cp | 3×106 | J·m-3·K-1 | [ |
Thermal conductivity | κ | 70 | W·m-1·K-1 | [ |
Table 1. Properties of the Al-7wt%Si alloy.
Parameter | Variable | Value | Unit | Ref |
---|---|---|---|---|
Nominal composition | w0 | 7 | wt% | |
Melting temperature | TM | 933.6 | K | [ |
Eutectic temperature | Teut | 850.15 | K | [ |
Segregation coefficient | K | 0.13 | [ | |
Liquidus slope | M | -6.5 | K·wt%-1 | [ |
Interdiffusion coefficient in liquid | Dl | 3×10-9 | m2·s-1 | [ |
Gibbs-Thomson coefficient | Γls | 1.96×10-7 | K·m | [ |
Selection parameter | σ | 1/(4π2) | [ | |
Volumetric latent heat | LM | 9.5×108 | J·m-3 | [ |
Volumetric heat capacity | Cp | 3×106 | J·m-3·K-1 | [ |
Thermal conductivity | κ | 70 | W·m-1·K-1 | [ |
Parameter | Unit | Values | ||||
---|---|---|---|---|---|---|
Supersaturation Ω | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | |
Curvature radius ρIv | mm | 7.3×10-1 | 1.1×10-1 | 2.4×10-2 | 4.8×10-3 | 2.9×10-4 |
Growth velocity vIv | mm·s-1 | 1.1×10-6 | 4.6×10-5 | 8.9×10-4 | 2.1×10-2 | 3.8 |
Diffusion length | mm | 2.8×103 | 6.5×101 | 3.4 | 1.4×10-1 | 7.9×10-4 |
Domain size | mm | 4100 | 620 | 135 | 27 | 1.63 |
Time step Δt | s | 2.4×104 | 88 | 1 | 8.5×10-3 | 2.8×10-6 |
hmax | mm | 58.4 | 1.5 | 2 | 0.3 | 0.023 |
Table 2. Simulation parameters for single parabola.
Parameter | Unit | Values | ||||
---|---|---|---|---|---|---|
Supersaturation Ω | 0.02 | 0.05 | 0.1 | 0.2 | 0.5 | |
Curvature radius ρIv | mm | 7.3×10-1 | 1.1×10-1 | 2.4×10-2 | 4.8×10-3 | 2.9×10-4 |
Growth velocity vIv | mm·s-1 | 1.1×10-6 | 4.6×10-5 | 8.9×10-4 | 2.1×10-2 | 3.8 |
Diffusion length | mm | 2.8×103 | 6.5×101 | 3.4 | 1.4×10-1 | 7.9×10-4 |
Domain size | mm | 4100 | 620 | 135 | 27 | 1.63 |
Time step Δt | s | 2.4×104 | 88 | 1 | 8.5×10-3 | 2.8×10-6 |
hmax | mm | 58.4 | 1.5 | 2 | 0.3 | 0.023 |
Fig. 4. (a, b) FE mesh of the PTN model for two sets of numerical parameters. Theoretical parabolae are reported in green and integration zone in cyan. Iso-concentration lines are highlighted in light red (c, d) Ratios v t i p / v I v and ρ t i p / ρ I v according to a / h min for various values of h min / ρ I v and for Ω=0.1.
Fig. 5. Ratios (a) v t i p / v I v and (b) ρ t i p / ρ I v according to the supersaturation Ω for a/hmin=5 and (red) hmin/ρIv=0.1 and (blue) hmin/ρIv=2.
Parameter | Value | Unit |
---|---|---|
Physical parameters | ||
Nucleation undercooling ΔTnucl | 5 | K |
Initial temperature Tini | 890 | K |
External temperature Text | 293 | K |
Heat transfer coefficient h | 3 | W·m-2·K-1 |
Domain radius - | 0.5 | mm |
Numerical parameters for the CAPTN-FE and CA-FE models | ||
Time step Δt | 5×10-3 | s |
Cell size lCA | 0.035 | mm |
Mesh size (FE) - | 0.15 | mm |
Numerical parameters specific to the CAPTN-FE model | ||
Initial nucleus branch length - | 5×10-3 | mm |
Maximum mesh size (PTN) hmax | 0.1 | mm |
Minimum mesh size (PTN) hmin | (ρtip)min/10 | mm |
Factor of solid PTN mesh size ps | 5 | - |
Integration parameter a | 10hmin | mm |
Truncation radius rcyl | 0.018 | mm |
Threshold of coupling FE-PTN | 0.7 | - |
Supersaturation threshold Ωlim | 0.02 | - |
Table 3. Parameters of the CAPTN-FE and the CA-FE simulations.
Parameter | Value | Unit |
---|---|---|
Physical parameters | ||
Nucleation undercooling ΔTnucl | 5 | K |
Initial temperature Tini | 890 | K |
External temperature Text | 293 | K |
Heat transfer coefficient h | 3 | W·m-2·K-1 |
Domain radius - | 0.5 | mm |
Numerical parameters for the CAPTN-FE and CA-FE models | ||
Time step Δt | 5×10-3 | s |
Cell size lCA | 0.035 | mm |
Mesh size (FE) - | 0.15 | mm |
Numerical parameters specific to the CAPTN-FE model | ||
Initial nucleus branch length - | 5×10-3 | mm |
Maximum mesh size (PTN) hmax | 0.1 | mm |
Minimum mesh size (PTN) hmin | (ρtip)min/10 | mm |
Factor of solid PTN mesh size ps | 5 | - |
Integration parameter a | 10hmin | mm |
Truncation radius rcyl | 0.018 | mm |
Threshold of coupling FE-PTN | 0.7 | - |
Supersaturation threshold Ωlim | 0.02 | - |
Fig. 8. Length (a) velocity (b) and normalized composition (Eq. (12)) (c) of the four primary branches of the grain in the CAPTN-FE (red) and CA-FE (blue) simulations.
Fig. 9. Snapshot at time t=9.6s of the (PTN) composition field w P T N l, (CA) mush fraction g + m and cell state, with (white) deallocated cells and (FE) volume average variables.
Fig. 10. Evolution of the (a) (PTN) composition field w P T N l, (b) (CA) mush fraction g + m and cell state, with (white) deallocated cells and (c) (FE) volume fraction of solid at four different times. (PTN) The white contour is the border of the Dirichlet condition using parabolae and the black line is the edge of area where g m = g l i m m.
Fig. 12. Initial polygon (blue) associated to the central cell ν. The branch of summit S ν 1 is considered as the internal branch of the polygon. Circumscribed circles of neighbor cells are represented with dotted lines. The grey polygon in dashed lines has an area A ν max. This polygon captures all neighbor cells.
[1] |
W. Kurz, M. Rappaz, R. Trivedi, Int. Mater. Rev. 66 (1) (2021) 30-76.
DOI URL |
[2] |
W. Kurz, B. Giovanolla, R. Trivedi, Acta Metall. 34 (5) (1986) 823-830.
DOI URL |
[3] |
M. Rappaz, C.-A. Gandin, Acta Metall. Mater. 41 (2) (1993) 345-360.
DOI URL |
[4] |
C.-A. Gandin, M. Rappaz, Acta Metall. Mater. 42 (7) (1994) 2233-2246.
DOI URL |
[5] |
C.-A. Gandin, M. Rappaz, Acta Mater 45 (5) (1997) 2187-2195.
DOI URL |
[6] | J.A. Dantzig, M. Rappaz, Solidification, EPFL Press, Lausanne, 2009. |
[7] |
C.-A. Gandin, J.-L. Desbiolles, M. Rappaz, P. Thevoz, Metall. Mater. Transact. A 30 (12) (1999) 3153-3165.
DOI URL |
[8] | T. Carozzani, H. Digonnet, M. Bellet, C.-A. Gandin, Mater. Sci. Eng. 33 (1) (2012) 12087-12096. |
[9] |
T. Carozzani, C.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, Y. Fautrelle, Metall. Mater. Transact. A 44 (2) (2013) 873-887.
DOI URL |
[10] | G. Ivantsov, Dokl. Akad. Nauk SSSR 58 (4) (1947) 567-569. |
[11] |
J. Langer, H. Müller-Krumbhaar, Acta Metall. 26 (11) (1978) 1681-1687.
DOI URL |
[12] |
C.-A. Gandin, G. Guillemot, B. Appolaire, N. Niane, Mater. Sci. Eng. 342 (1-2) (2003) 44-50.
DOI URL |
[13] |
G. Guillemot, C.-A. Gandin, H. Combeau, ISIJ Int. 46 (6) (2006) 880-895.
DOI URL |
[14] | A. Saad, C.-A. Gandin, M. Bellet, O. Shevchenko, S. Eckert, Metall. Mater. Trans- act. A 46 (11) (2015) 4886-4897. |
[15] |
J. Ni, C. Beckermann, Metall. Trans. B 22 (3) (1991) 349-361.
DOI URL |
[16] |
C. Wang, C. Beckermann, Metall. Mater. Transact. A 24 (12) (1993) 2787-2802.
DOI URL |
[17] |
T. Koshikawa, C.-A. Gandin, M. Bellet, H. Yamamura, M. Bobadilla, ISIJ Int. 54 (6) (2014) 1274-1282.
DOI URL |
[18] |
W. Wang, P. Lee, M. Mclean, Acta Mater 51 (10) (2003) 2971-2987.
DOI URL |
[19] |
L. Beltran-Sanchez, D. Stefanescu, Metall. Mater. Transact. A 34 (2) (2003) 367-382.
DOI URL |
[20] |
A. Kao, I. Krastins, M. Alexandrakis, N. Shevchenko, S. Eckert, K. Pericleous, JOM 71 (1) (2019) 48-58.
DOI URL |
[21] |
K. Reuther, M. Rettenmayr, Comput. Mater. Sci 95 (2014) 213-220.
DOI URL |
[22] |
A. Karma, W. Rappel, Phys. Rev. E 57 (4) (1998) 4323.
DOI URL |
[23] | T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka, N. Maruyama, A. Nukada, S. Matsuoka, in:Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, 2011, pp. 1-11. |
[24] |
D. Tourret, A. Karma, Acta Mater. 82 (2015) 64-83.
DOI URL |
[25] |
A. Pineau, G. Guillemot, D. Tourret, A. Karma, A. Karma, C.-A. Gandin, Acta Mater 155 (2018) 286-301.
DOI URL |
[26] |
D. Tourret, A. Karma, Acta Mater. 61 (17) (2013) 6474-6491.
DOI URL |
[27] |
D. Tourret, A. Karma, Acta Mater. 120 (2016) 240-254.
DOI URL |
[28] |
P.-A. Geslin, C.-H. Chen, A. Tabrizi, A. Karma, Acta Mater. 202 (2021) 42-54.
DOI URL |
[29] |
C.-H. Chen, A. Tabrizi, P.-A. Geslin, A. Karma, Acta Mater. 202 (2021) 463-477.
DOI URL |
[30] |
Y. Souhar, V. De Felice, C. Beckermann, H. Combeau, M. Založnik, Comput. Mater. Sci. 112 (2016) 304.
DOI URL |
[31] |
A. Viardin, M. Založnik, Y. Souhar, M. Apel, H. Combeau, Acta Mater. 122 (2017) 386.
DOI URL |
[32] |
A. Olmedilla, M. Založnik, H. Combeau, Acta Mater. 173 (2019) 249.
DOI |
[33] |
J. Langer, Science 243 (4895) (1989) 1150-1156.
PMID |
[34] |
A. Barbieri, J. Langer, Phys. Rev. A 39 (10) (1989) 5314.
DOI URL |
[35] | F. Alauzet, P. Frey, G. P, ECCOMAS 2004 (2004). |
[36] |
C.-A. Gandin, R. Schaefer, M. Rappaz, Acta Mater. 44 (8) (1996) 3339-3347.
DOI URL |
[37] | M. Rappaz, M. Bellet, M. Deville, Modélisation numérique en science et génie des matériaux, volume 10, PPUR presses polytechniques, 1998. |
[38] |
A. Saad, C.-A. Gandin, M. Bellet, Comput. Mater. Sci. 99 (2015) 221-231.
DOI URL |
[39] |
V.R. Voller, A.D. Brent, C. Prakash, Int. J. Heat Mass Transf. 32 (9) (1989) 1719-1731.
DOI URL |
[40] | W. Kurz, D.J. Fischer, Fundamentals of Solidification, Trans. Tech, Aedermanns- dorf, Switzerland (1989). |
[41] |
M. Gündüz, J. Hunt, Acta Metall. 33 (9) (1985) 1651-1672.
DOI URL |
[42] | R. Pehlke, A. Jeyarajan, H. Wada, NASA STI/Recon Techn. Rep N 83 (1982). |
[43] |
D. Tourret, M. Francois, A. Clarke, Comput. Mater. Sci 162 (2019) 206-227.
DOI URL |
[44] | G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noël, D. Liu, H. Nguyen Thi, N. Bergeon, C.-A. Gandin, D. Browne, C. Beckermann, et al., 790, Trans Tech Publ, 2014, pp. 12-21. |
[1] | Naifang Zhang, Qiaodan Hu, Zongye Ding, Wenquan Lu, Fan Yang, Jianguo Li. 3D morphological evolution and growth mechanism of proeutectic FeAl3 phases formed at Al/Fe interface under different cooling rates [J]. J. Mater. Sci. Technol., 2022, 116(0): 83-93. |
[2] | Xin Liu, Sansan Shuai, Chenglin Huang, Shijun Wu, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Microstructure and mechanical properties of directionally solidified Al-rich Ni3Al-based alloy under static magnetic field [J]. J. Mater. Sci. Technol., 2022, 110(0): 117-127. |
[3] | Na Yan, Delu Geng, Bingbo Wei. Damping performance and martensitic transformation of rapidly solidified Fe-17%Mn alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 1-7. |
[4] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[5] | Zhenzhuang Li, Zongbin Li, Yunzhuo Lu, Xing Lu, Liang Zuo. Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy [J]. J. Mater. Sci. Technol., 2022, 117(0): 167-173. |
[6] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[7] | Avik Mahata, Tanmoy Mukhopadhyay, Mohsen Asle Zaeem. Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals [J]. J. Mater. Sci. Technol., 2022, 106(0): 77-89. |
[8] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
[9] | Qingdong Zhong, Huaiyu Zhong, Hongbo Han, Mingyong Shu, Long Hou, Yanyan Zhu, Xi Li. Formation mechanism of ring-like segregation and structure during directional solidification under axial static magnetic field [J]. J. Mater. Sci. Technol., 2022, 99(0): 48-54. |
[10] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[11] | Mengyuan Hao, Pei Li, Xuexiong Li, Tianlong Zhang, Dong Wang, Qiaoyan Sun, Libin Liu, Jinshan Li, Yuyou Cui, Rui Yang, Dongsheng Xu. Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility [J]. J. Mater. Sci. Technol., 2022, 124(0): 150-163. |
[12] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
[13] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
[14] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
[15] | Yue Wu, Yang Tang, Ya Zhang, Yanan Fu, Hui Xing, Jiao Zhang, Jun Jiang, Baode Sun. In situ radiographic study of the grain refining behavior of Al3Sc during the solidification of Al-10Cu alloy [J]. J. Mater. Sci. Technol., 2022, 122(0): 33-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||