J. Mater. Sci. Technol. ›› 2022, Vol. 124: 41-52.DOI: 10.1016/j.jmst.2021.12.078
• Research Article • Previous Articles Next Articles
Xiaohui Liu, Yunzhong Liu(), Zhiguang Zhou, Qiangkun Zhan
Received:
2021-11-09
Revised:
2021-12-19
Accepted:
2021-12-20
Published:
2022-10-10
Online:
2022-04-01
Contact:
Yunzhong Liu
About author:
∗E-mail address: yzhliu@scut.edu.cn (Y. Liu).Xiaohui Liu, Yunzhong Liu, Zhiguang Zhou, Qiangkun Zhan. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy[J]. J. Mater. Sci. Technol., 2022, 124: 41-52.
Fig. 1. Schematic of the challenges in LPBF processed Al-Zn-Mg-Cu alloys (a) and the synergistic grain-refining strategy for solidification structure control (b-d). (a) Diagram of a typical columnar grain structure of LPBF processed Al-Zn-Mg-Cu alloys without any modification. (b) Diagram of grain refinement induced by NPs growth restriction. (c) Diagram of grain refinement controlled by powerful segregating elements. (d) Diagram of the synergistic grain-refining strategy including heterogeneous nucleation, solute-driven growth restriction and NP-induced growth restriction.
Fig. 2. SEM photographs of the Al-Zn-Mg-Cu alloy powders (a), TiC NPs (b), TiH2 particles (c) and functionalized powders (d). Schematics of the LPBF process (e), scanning strategy applied in LPBF (f) and schematic depiction of the built samples (g).
Empty Cell | Samplelabels | Refiners (wt.%) | Target nucleants | Target grain growth restriction | Nominal content of Ti equivalent (wt.%) | |
---|---|---|---|---|---|---|
Empty Cell | Empty Cell | TiC | TiH2 | Empty Cell | Empty Cell | Empty Cell |
Group A | A1A2 | 1.001.96 | 00 | TiC | NP-induced blocking layer | 0.801.57 |
Group B | B0B1B2 | 000 | 0.400.831.63 | Al3Ti | Solute-driven CS | 0.380.801.57 |
Group AB | AB1AB2 | 1.001.00 | 0.400.80 | TiC + Al3Ti | NP-induced blocking layer + solute-driven CS | 1.181.57 |
Table 1. Sample labels of LPBF processed Al-Zn-Mg-Cu alloys.
Empty Cell | Samplelabels | Refiners (wt.%) | Target nucleants | Target grain growth restriction | Nominal content of Ti equivalent (wt.%) | |
---|---|---|---|---|---|---|
Empty Cell | Empty Cell | TiC | TiH2 | Empty Cell | Empty Cell | Empty Cell |
Group A | A1A2 | 1.001.96 | 00 | TiC | NP-induced blocking layer | 0.801.57 |
Group B | B0B1B2 | 000 | 0.400.831.63 | Al3Ti | Solute-driven CS | 0.380.801.57 |
Group AB | AB1AB2 | 1.001.00 | 0.400.80 | TiC + Al3Ti | NP-induced blocking layer + solute-driven CS | 1.181.57 |
Element | Al | Zn | Mg | Cu | Cr | Ti |
---|---|---|---|---|---|---|
Al-Zn-Mg-Cu powder | Bal. | 8.31 | 3.54 | 1.67 | 0.22 | <0.01 |
Al-Zn-Mg-Cu alloy | Bal. | 5.96 | 2.81 | 1.78 | 0.24 | <0.01 |
A2 sample | Bal. | 5.66 | 2.84 | 1.77 | 0.21 | 1.44 |
B2 sample | Bal. | 5.62 | 2.69 | 1.63 | 0.20 | 1.42 |
AB2 sample | Bal. | 5.52 | 2.64 | 1.76 | 0.24 | 1.43 |
AA7075 aluminum alloy | Bal. | 5.1-6.1 | 2.1-2.9 | 1.2-2.0 | 0.18-0.28 | <0.2 |
Table 2. ICP-AES results of the powders and as-built samples (wt.%).
Element | Al | Zn | Mg | Cu | Cr | Ti |
---|---|---|---|---|---|---|
Al-Zn-Mg-Cu powder | Bal. | 8.31 | 3.54 | 1.67 | 0.22 | <0.01 |
Al-Zn-Mg-Cu alloy | Bal. | 5.96 | 2.81 | 1.78 | 0.24 | <0.01 |
A2 sample | Bal. | 5.66 | 2.84 | 1.77 | 0.21 | 1.44 |
B2 sample | Bal. | 5.62 | 2.69 | 1.63 | 0.20 | 1.42 |
AB2 sample | Bal. | 5.52 | 2.64 | 1.76 | 0.24 | 1.43 |
AA7075 aluminum alloy | Bal. | 5.1-6.1 | 2.1-2.9 | 1.2-2.0 | 0.18-0.28 | <0.2 |
Fig. 3. OM images of Al-Zn-Mg-Cu alloy (a), A1 sample (b), A2 sample (c), B0 sample (d), B1 sample (e) and B2 sample (f). (g) Crack density and relative density of the as-built samples. OM images of AB1 sample (h) and AB2 sample (i).
Fig. 4. SEM images showing typical grain microstructures of the XOZ cross-sections of the as-built alloys: (a) Al-Zn-Mg-Cu alloy, (b) A1 sample, (c) A2 sample, (d) high magnification of A2 sample marked in (c), (e) B0 sample, (f) B1 sample, (g) B2 sample, (h) high magnification of B2 sample marked in (g), (i) AB1 sample, (j) AB2 sample and (k) high magnification of AB2 sample marked in (j).
Fig. 5. IPFs and corresponding grain size distributions (a-d) and PFs (e-h) of LPBF processed Al-Zn-Mg-Cu alloy (a, e), A2 sample (b, f), B2 sample (c, g) and AB2 sample (d, h).
Fig. 7. SEM images showing typical phase morphologies of the as-built samples after etching by NaOH reagent, with embedded EDS results of corresponding cuboidal particles: (a) Al-Zn-Mg-Cu alloy, (b) A2 sample, (c) B2 sample and (d) AB2 sample.
Fig. 8. TEM results of the as-built A2 sample: (a) high-angle annular dark field (HAADF) image, (b) EDS elemental mappings, (c) EDS analysis of TiC NPs, (d) SAED pattern of TiC and (e) HRTEM image of the α-Al/TiC interface with the corresponding fast Fourier transform (FFT) pattern.
Fig. 9. TEM results of the as-built B2 sample: (a) HAADF micrograph, (b) EDS elemental mappings, (c) EDS analysis of L12-Al3Ti particles, (d) SAED patterns of L12-Al3Ti particles and (e) HRTEM image of the α-Al/L12-Al3Ti interface with the corresponding FFT patterns.
Fig. 10. TEM results of the as-built AB2 sample: (a) HAADF micrograph, (b) EDS elemental mappings, (c) HRTEM image of the α-Al/TiC interface with the corresponding FFT patterns, (d) HRTEM image of the α-Al/L12-Al3Ti interface with the corresponding FFT patterns and (e) SAED patterns of the L12-Al3Ti particles.
Fig. 11. Mechanical properties of the LPBF processed alloys: (a) stress-strain curves of LPBF processed Al-Zn-Mg-Cu alloys and AB2 samples, with the inset table showing average values of UTS, YS and EL, (b) a comparison of the mechanical properties of the AB2 samples with other AM 7xxx series aluminum alloys and wrought 7xxx alloys previously reported [3, 28, 41, [43], [44], [45], [46], [47], [48]]. Fracture morphologies of the as-built Al-Zn-Mg-Cu alloy (c), T6 Al-Zn-Mg-Cu alloy (d), as-built AB2 sample (e) and T6 AB2 sample (f).
Element | Ti | Ta | Zr | Si | Cr | Mg | Cu | Mn |
---|---|---|---|---|---|---|---|---|
k | 9 | 2.5 | 2.5 | 0.11 | 2.0 | 0.51 | 0.17 | 0.94 |
m | 30.7 | 70 | 4.5 | -6.6 | 3.5 | -6.2 | -3.4 | -1.6 |
m(k-1) | 245.6 | 105.0 | 6.8 | 5.9 | 3.5 | 3.0 | 2.8 | 0.1 |
Table 3. Growth-restricting ability of typical segregating elements in aluminum system [11].
Element | Ti | Ta | Zr | Si | Cr | Mg | Cu | Mn |
---|---|---|---|---|---|---|---|---|
k | 9 | 2.5 | 2.5 | 0.11 | 2.0 | 0.51 | 0.17 | 0.94 |
m | 30.7 | 70 | 4.5 | -6.6 | 3.5 | -6.2 | -3.4 | -1.6 |
m(k-1) | 245.6 | 105.0 | 6.8 | 5.9 | 3.5 | 3.0 | 2.8 | 0.1 |
[1] |
T. Dursun, C. Soutis, Mater. Des. 56 (2014) 862-871.
DOI URL |
[2] |
J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, J. Mater. Sci. Technol. 35 (2019) 270-284.
DOI URL |
[3] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[4] |
M. Easton, D.H. StJohn, L. Sweet, Mater. Sci. Forum 630 (2010) 213-221.
DOI URL |
[5] | A. Hadadzadeh, B.S. Amirkhiz, J. Li, M. Mohammadi, Addit. Manuf. 23 (2018) 121-131. |
[6] |
L. Zhou, H. Pan, H. Hyer, S. Park, Y. Bai, B. McWilliams, K. Cho, Y. Sohn, Scr. Mater. 158 (2019) 24-28.
DOI URL |
[7] | J. Zhang, J. Gao, B. Song, L. Zhang, C. Han, C. Cai, K. Zhou, Y. Shi, Addit. Manuf. 38 (2021) 101829. |
[8] |
H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, X. Zeng, Scr. Mater. 134 (2017) 6-10.
DOI URL |
[9] |
A.L. Greer, J. Chem. Phys. 145 (2016) 211704.
DOI URL |
[10] | A. Cibula, J. Inst. Met. 76 (2020) 321-360 (1949-1950). |
[11] |
M. Easton, D. StJohn, Metall. Mater. Trans. A 30 (1999) 1613-1623.
DOI URL |
[12] |
Y. Wang, C.M. Fang, L. Zhou, T. Hashimoto, X. Zhou, Q.M. Ramasse, Z. Fan, Acta Mater. 164 (2019) 428-439.
DOI |
[13] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201.
DOI URL |
[14] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[15] |
Y. Li, Y. Jiang, B. Hu, Q. Li, Scr. Mater. 187 (2020) 262-267.
DOI URL |
[16] |
J. Xu, Y. Li, B. Hu, Y. Jiang, Q. Li, J. Mater. Sci. 54 (2019) 14561-14576.
DOI |
[17] |
C. Zhao, Y. Li, J. Xu, Q. Luo, Y. Jiang, Q. Xiao, Q. Li, J. Mater. Sci. Technol. 94 (2021) 104-112.
DOI URL |
[18] |
X. Liu, Q. Zhao, Z. Ji, B. Wang, Y. Zhu, Q. Jiang, J. Mater. Process. Technol. 296 (2021) 117200.
DOI URL |
[19] |
P.S. Mohanty, J.E. Gruzlesk, Acta Metall. Mater. 43 (1995) 2001-2012.
DOI URL |
[20] |
J. Xu, R. Li, Q. Li, Metall. Mater. Trans. A 52 (2021) 1077-1094.
DOI URL |
[21] |
A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Acta Mater. 48 (2000) 2823-2835.
DOI URL |
[22] |
I. Maxwell, A. Hellawell, Acta Metall. 23 (1975) 229-237.
DOI URL |
[23] |
Q. Tan, J. Zhang, Q. Sun, Z. Fan, G. Li, Y. Yin, Y. Liu, M.X. Zhang, Acta Mater. 196 (2020) 1-16.
DOI URL |
[24] |
J.H. Martin, B. Yahata, J. Mayer, R. Mone, E. Stonkevitch, J. Miller, M.R. O’Masta, T. Schaedler, J. Hundley, P. Callahan, T. Pollock, Acta Mater. 200 (2020) 1022-1037.
DOI URL |
[25] |
R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Acta Mater. 193 (2020) 83-98.
DOI URL |
[26] |
K.V. Yang, Y. Shi, F. Palm, X. Wu, P. Rometsch, Scr. Mater. 145 (2018) 113-117.
DOI URL |
[27] |
A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schäublin, F. Palm, K. Wegener, Mater. Des. 115 (2017) 52-63.
DOI URL |
[28] |
L. Li, R. Li, T. Yuan, C. Chen, Z. Zhang, X. Li, Mater. Sci. Eng. A 787 (2020) 139492.
DOI URL |
[29] |
J. Bi, Z. Lei, Y. Chen, X. Chen, Z. Tian, J. Liang, X. Zhang, X. Qin, Mater. Sci. Eng. A 768 (2019) 138478.
DOI URL |
[30] |
J. Røyset, N. Ryum, Int. Mater. Rev. 50 (2013) 19-44.
DOI URL |
[31] |
M. Easton, D. StJohn, Metall. Mater. Trans. A 30 (1999) 1625-1633.
DOI URL |
[32] |
H. Li, T. Sritharan, Y.M. Lam, N.Y. Leng, J. Mater. Process. Technol. 66 (1997) 253-257.
DOI URL |
[33] |
D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, M.A. Easton, Metall. Mater. Trans. A 51 (2020) 4341-4359.
DOI URL |
[34] |
P. Wang, H. Lei, X. Zhu, H. Chen, D. Fang, J. Alloy. Compd. 789 (2019) 852-859.
DOI URL |
[35] |
K. Wang, H. Jiang, Q. Wang, B. Ye, W. Ding, Metall. Mater. Trans. A 47 (2016) 4788-4794.
DOI URL |
[36] |
M. Sokoluk, C. Cao, S. Pan, X. Li, Nat. Commun. 10 (2019) 98.
DOI URL |
[37] |
X. Liu, Y. Liu, Z. Zhou, K. Wang, Q. Zhan, X. Xiao, Mater. Sci. Eng. A 813 (2021) 141171.
DOI URL |
[38] |
K.V. Yang, P. Rometsch, T. Jarvis, J. Rao, S. Cao, C. Davies, X. Wu, Mater. Sci. Eng. A 712 (2018) 166-174.
DOI URL |
[39] |
K. Wang, H.Y. Jiang, Y.W. Jia, H. Zhou, Q.D. Wang, B. Ye, W.J. Ding, Acta Mater. 103 (2016) 252-263.
DOI URL |
[40] |
L.Y. Chen, J.Q. Xu, X.C. Li, Mater. Res. Lett. 3 (2014) 43-49.
DOI URL |
[41] | S.Y. Zhou, Y. Su, H. Wang, J. Enz, T. Ebel, M. Yan, Addit. Manuf. 36 (2020) 101458. |
[42] |
P. Mair, V.S. Goettgens, T. Rainer, N. Weinberger, I. Letofsky-Papst, S. Mitsche, G. Leichtfried, J. Alloy. Compd. 863 (2021) 158714.
DOI URL |
[43] |
W. Reschetnik, J.P. Brüggemann, M.E. Aydinöz, O. Grydin, K.P. Hoyer, G. Kullmer, H.A. Richard, Procedia Struct. Integr. 2 (2016) 3040-3048.
DOI URL |
[44] |
Y. Otani, S. Sasaki, Mater. Sci. Eng. A 777 (2020) 139079.
DOI URL |
[45] |
L. Li, R. Li, T. Yuan, C. Chen, M. Wang, J. Yuan, Q. Weng, J. Alloy. Compd. 821 (2020) 153520.
DOI URL |
[46] |
R. Casati, M. Coduri, M. Riccio, A. Rizzi, M. Vedani, J. Alloy. Compd. 801 (2019) 243-253.
DOI |
[47] |
X.Y. Dai, C.Q. Xia, A.R. Wu, X.M. Peng, Mater. Sci. Forum 546-549 (2007) 961-964.
DOI URL |
[48] |
D. Liu, H.V. Atkinson, P. Kapranos, W. Jirattiticharoean, H. Jones, Mater. Sci. Eng. A 361 (2003) 213-224.
DOI URL |
[49] |
Z.H. Xiong, S.L. Liu, S.F. Li, Y. Shi, Y.F. Yang, R.D.K. Misra, Mater. Sci. Eng. A 740-741 (2019) 148-156.
DOI URL |
[50] |
H. Yang, L. Meng, S. Luo, Z. Wang, J. Alloy. Compd. 828 (2020) 154473.
DOI URL |
[51] |
Y. Li, H. Li, L. Katgerman, Q. Du, J. Zhang, L. Zhuang, Prog. Mater. Sci. 117 (2021) 100741.
DOI URL |
[52] |
S. Saha, T.Z. Todorova, J.W. Zwanziger, Acta Mater. 89 (2015) 109-115.
DOI URL |
[53] |
A. Majumdar, B.C. Muddle, Mater. Sci. Eng. A 169 (1993) 135-147.
DOI URL |
[54] |
M. Zhang, P. Kelly, M. Easton, J. Taylor, Acta Mater. 53 (2005) 1427-1438.
DOI URL |
[55] |
B.S. Murty, S.A. Kori, M. Chakraborty, Int. Mater. Rev. 47 (2013) 3-29.
DOI URL |
[56] |
P. Mair, L. Kaserer, J. Braun, N. Weinberger, I. Letofsky-Papst, G. Leichtfried, Mater. Sci. Eng. A 799 (2021) 140209.
DOI URL |
[57] |
D. Wang, M.P. De Cicco, X. Li, Mater. Sci. Eng. A 532 (2012) 396-400.
DOI URL |
[58] |
L.Y. Chen, J.Q. Xu, H. Choi, H. Konishi, S. Jin, X.C. Li, Nat. Commun. 5 (2014) 3879.
DOI URL |
[59] |
N. Hansen, Scr. Mater. 51 (2004) 801-806.
DOI URL |
[60] |
J. Fiocchi, C.A. Biffi, A. Tuissi, Mater. Des. 191 (2020) 108581.
DOI URL |
[61] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[62] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[1] | Jie Tang, Mingcai Liu, Guowei Bo, Fulin Jiang, Chunhui Luo, Jie Teng, Dingfa Fu, Hui Zhang. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling [J]. J. Mater. Sci. Technol., 2022, 116(0): 130-150. |
[2] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[3] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
[4] | J.M. Yu, T. Hashimoto, H.T. Li, N. Wanderka, Z. Zhang, C. Cai, X.L. Zhong, J. Qin, Q.P. Dong, H. Nagaumi, X.N. Wang. Formation of intermetallic phases in unrefined and refined AA6082 Al alloys investigated by using SEM-based ultramicrotomy tomography [J]. J. Mater. Sci. Technol., 2022, 120(0): 118-128. |
[5] | Xingpu Zhang, Xiaotong Deng, Haofei Zhou, Jiangwei Wang. Atomic-scale study on the precipitation behavior of an Al-Zn-Mg-Cu alloy during isochronal aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 281-292. |
[6] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[7] | Hongxiang Jiang, Yan Song, Lili Zhang, Jie He, Shixin Li, Jiuzhou Zhao. Efficient grain refinement of Al alloys induced by in-situ nanoparticles [J]. J. Mater. Sci. Technol., 2022, 124(0): 14-25. |
[8] | Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging [J]. J. Mater. Sci. Technol., 2022, 120(0): 53-64. |
[9] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
[10] | Cheng Zhu, Zhihao Zhao, Qingfeng Zhu, Gaosong Wang, Yubo Zuo, Qiangqiang Li, Gaowu Qin. Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 114-122. |
[11] | Miao Wang, Xingwei Huang, Peng Xue, Shangquan Wu, Chuanyong Cui, Qingchuan Zhang. High strength and ductility achieved in friction stir processed Ni-Co based superalloy with fine grains and nanotwins [J]. J. Mater. Sci. Technol., 2022, 106(0): 162-172. |
[12] | Seong-Woo Choi, Jae Suk Jeong, Jong Woo Won, Jae Keun Hong, Yoon Suk Choi. Grade-4 commercially pure titanium with ultrahigh strength achieved by twinning-induced grain refinement through cryogenic deformation [J]. J. Mater. Sci. Technol., 2021, 66(0): 193-201. |
[13] | Yuliang Zhao, Weiwen Zhang, Dongfu Song, Bo Lin, Fanghua Shen, Donghai Zheng, ChunXiao Xie, Zhenzhong Sun, Yanan Fu, Runxia Li. Nucleation and growth of Fe-rich phases in Al-5Ti-1B modified Al-Fe alloys investigated using synchrotron X-ray imaging and electron microscopy [J]. J. Mater. Sci. Technol., 2021, 80(0): 84-99. |
[14] | Tongzhao Gong, Yun Chen, Shanshan Li, Yanfei Cao, Dianzhong Li, Xing-Qiu Chen, Guillaume Reinhart, Henri Nguyen-Thi. Revisiting dynamics and models of microsegregation during polycrystalline solidification of binary alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 155-167. |
[15] | Yang Li, Ying Jiang, Bin Liu, Qun Luo, Bin Hu, Qian Li. Understanding grain refining and anti Si-poisoning effect in Al-10Si/Al-5Nb-B system [J]. J. Mater. Sci. Technol., 2021, 65(0): 190-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||