J. Mater. Sci. Technol. ›› 2022, Vol. 124: 53-64.DOI: 10.1016/j.jmst.2022.02.023
• Research Article • Previous Articles Next Articles
Lufang Ninga,b,c,d, Jing Xua,b,c,d,*(), Yang Loue, Chengsi Pane, Zhouping Wanga,b,c,d,f,g, Yongfa Zhuh
Received:
2022-01-09
Revised:
2022-02-04
Accepted:
2022-02-09
Published:
2022-10-10
Online:
2022-03-31
Contact:
Jing Xu
About author:
∗State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. E-mail address: xujing823@jiangnan.edu.cn (J. Xu).Lufang Ning, Jing Xu, Yang Lou, Chengsi Pan, Zhouping Wang, Yongfa Zhu. A 3D/0D cobalt-embedded nitrogen-doped porous carbon/supramolecular porphyrin magnetic-separation photocatalyst with highly efficient pollutant degradation and water oxidation performance[J]. J. Mater. Sci. Technol., 2022, 124: 53-64.
Sample | C | N | H | O | Co |
---|---|---|---|---|---|
SA-TCPP | 65.83 | 6.41 | 3.95 | 23.81 | - |
Co-N-C/ST (30%) | 43.83 | 9.12 | 2.25 | 24.66 | 20.14 |
Co-N-C | 39.43 | 9.58 | 1.97 | 25.28 | 23.74 |
Table 1. Elemental analysis of SA-TCPP, Co-N-C/ST (30%), and Co-N-C (wt.%).
Sample | C | N | H | O | Co |
---|---|---|---|---|---|
SA-TCPP | 65.83 | 6.41 | 3.95 | 23.81 | - |
Co-N-C/ST (30%) | 43.83 | 9.12 | 2.25 | 24.66 | 20.14 |
Co-N-C | 39.43 | 9.58 | 1.97 | 25.28 | 23.74 |
Fig. 5. (a) Apparent rate constants (k) for 2,4-DCP photodegradation of Co-N-C, SA-TCPP, Co-N-C/SA-TCPP, and g-C3N4 under visible light calculated via the pseudo-first-order kinetic fitting. (b) HPLC chromatograms of the 2,4-DCP solutions after different photodegradation times by Co-N-C/ST (30%). (c) Photocatalytic activities of Co-N-C/ST (30%) at different wavelengths for degradation of 20 ppm 2,4-DCP.
Fig. 6. (a) Apparent rate constant (k) for different pollutants degradation of Co-N-C, SA-TCPP, and Co-N-C/ST(30%) under visible light. (b) Stability of Co-N-C/ST(30%) for ethylene degradation under visible light. (c) Oxygen evolution rates of SA-TCPP and Co-N-C/ST (30%) under visible light. (d) Magnetic hysteresis loops of Co-N-C, SA-TCPP, and Co-N-C/ST (30%) at 300 K. The insert shows the magnetic separation function of Co-N-C/ST (30%) by using a magnet.
Fig. 7. (a) PL emission spectra of Co-N-C, SA-TCPP, and Co-N-C/ST (30%) under photoexcitation at 408 nm. (b) Time-resolved fluorescence decay spectroscopy of SA-TCPP and Co-N-C/ST(30%). (c) Photocurrent responses under chopped illumination and (d) EIS Nyquist plots under visible light of SA-TCPP, Co-N-C, and Co-N-C/ST(30%). The insert equivalent circuit is used to simulate the impedance.
Sample | τ1 (ns) | B1 | τ2 (ns) | B2 | τave (ns) |
---|---|---|---|---|---|
SA-TCPP | 1.60 | 6130.48 | 7.40 | 2640.51 | 5.46 |
Co-N-C/ST (30%) | 6.29 | 2689.10 | 8.70 | 7704.01 | 8.21 |
Table 2. Fluorescence lifetimes of charge carriers for SA-TCPP and Co-N-C/ST (30%).
Sample | τ1 (ns) | B1 | τ2 (ns) | B2 | τave (ns) |
---|---|---|---|---|---|
SA-TCPP | 1.60 | 6130.48 | 7.40 | 2640.51 | 5.46 |
Co-N-C/ST (30%) | 6.29 | 2689.10 | 8.70 | 7704.01 | 8.21 |
Fig. 8. (a) 2,4-DCP degradation activities of Co-N-C/ST (30%) with the addition of different scavengers under visible light. ESR spectra of SA-TCPP and Co-N-C/ST (30%) under dark and visible light for the detection of (b) 1O2 and (c) e-.
Scheme 3. Schematic diagram of the proposed mechanism of carriers separation and photocatalytic process under visible light in Co-N-C/SA-TCPP composite system.
[1] |
Y.C. Deng, L. Tang, G.M. Zeng, Z.J. Zhu, M. Yan, Y.Y. Zhou, J.J. Wang, Y.N. Liu, J.J. Wang, Appl. Catal. B Environ. 203 (2017) 343-354.
DOI URL |
[2] |
B. Yang, Y.F. Zhang, S.B. Deng, G. Yu, Y.H. Lu, J.H. Wu, J.Z. Xiao, G. Chen, X.B. Cheng, L.L. Shi, Chem. Eng. J. 234 (2013) 346-353.
DOI URL |
[3] |
X.X. Huang, N.W. Zhu, F.L. Mao, Y. Ding, S.H. Zhang, H.R. Liu, F. Li, P.X. Wu, Z. Dang, Y.X. Ke, Chem. Eng. J. 392 (2020) 123636.
DOI URL |
[4] |
L.K. Ge, J.W. Chen, X.X. Wei, S.Y. Zhang, X.L. Qiao, X.Y. Cai, Q. Xie, Environ. Sci. Technol. 44 (2010) 2400-2405.
DOI URL |
[5] |
K. Sadeghi, Y. Lee, J. Seo, Food Rev. Int. 37 (2021) 155-176.
DOI URL |
[6] | G. Zhao, W.X. Ma, X.K. Wang, Y.P. Xing, S.H. Hao, X.J. Xu, Adv. Powder Mater. 1 (2021) 100008. |
[7] |
Q.Z. Gao, J. Xu, Z.P. Wang, Y.F. Zhu, Appl. Catal. B Environ. 271 (2020) 118933.
DOI URL |
[8] |
J.F. Jing, J. Yang, Z.J. Zhang, Y.F. Zhu, Adv. Energy Mater. 11 (2021) 2101392.
DOI URL |
[9] |
J. Xu, Z.P. Wang, Y.F. Zhu, J. Mater. Sci. Technol. 49 (2020) 133-143.
DOI URL |
[10] |
L.W. Wang, X. Zhang, X. Yu, E.N. Gao, Z.Y. Shen, X.L. Zhang, S.G. Ge, J. Liu, Z.J. Gu, C.Y. Chen, Adv. Mater. 31 (2019) 1901965.
DOI URL |
[11] |
N. Zhang, L. Wang, H.M. Wang, R.H. Cao, J.F. Wang, F. Bai, H.Y. Fan, Nano Lett. 18 (2018) 560-566.
DOI PMID |
[12] |
Z.Y. Ma, C. Zeng, L.L. Hu, Q. Zhao, Q. Yang, J.F. Niu, B.H. Yao, Y.Q. He, Appl. Surf. Sci. 484 (2019) 489-500.
DOI URL |
[13] |
C.H. Ruan, L.F. Zhang, Q.L. Yeling, C. Xu, X.B. Zhang, J.M. Wan, Z.G. Peng, J.J. Shi, X.Y. Li, L.N. Wang, Mater. Lett. 141 (2015) 362-365.
DOI URL |
[14] |
L. Wang, S.H. Duan, P.X. Jin, H.D. She, J.W. Huang, Z.G. Lei, T.R. Zhang, Q.Z. Wang, Appl. Catal. B Environ. 239 (2018) 599-608.
DOI URL |
[15] |
Z.J. Zhang, Y.F. Zhu, X.J. Chen, H.J. Zhang, J. Wang, Adv. Mater. 31 (2019) 1806626.
DOI URL |
[16] |
Z.J. Zhang, L. Wang, W.X. Liu, Z.H. Yan, Y.F. Zhu, S.Y. Zhou, S.Y. Guan, Natl. Sci. Rev. 8 (2021) nwaa155.
DOI URL |
[17] |
J.F. Wang, Y. Zhong, L. Wang, N. Zhan, R.H. Cao, K.F. Bian, L. Alarid, R.E. Haddad, F. Bai, H.Y. Fan, Nano Lett. 16 (2016) 6523-6528.
DOI URL |
[18] |
R.F. Chen, J.L. Shi, Y. Ma, G.Q. Lin, X.J. Lang, C. Wang, Angew. Chem. Int. Ed. 58 (2019) 6430-6434.
DOI URL |
[19] |
J. Xu, Q.Z. Gao, Z.P. Wang, Y. Zhu, Appl. Catal. B Environ. 291 (2021) 120059.
DOI URL |
[20] |
W.J. Jiang, Y.F. Zhu, G.X. Zhu, Z.J. Zhang, X.J. Chen, W.Q. Yao, J. Mater. Chem. A 5 (2017) 5661-5679.
DOI URL |
[21] |
J. Yang, H. Miao, Y.X. Wei, W.L. Li, Y.F. Zhu, Appl. Catal. B Environ. 240 (2019) 225-233.
DOI URL |
[22] | L.P. Yao, Z.W. Chen, Z.Y. Lu, X. Wang, J. Photochem. Photobiol. A 389 (2020) 5661-5679. |
[23] |
J.H. Yang, D.G. Wang, H.X. Han, C. Li, Acc. Chem. Res. 46 (2013) 1900-1909.
DOI URL |
[24] |
X.Q. Hao, Z.W. Cui, J. Zhou, Y.C. Wang, Y. Hu, Y. Wang, Z.G. Zou, Nano Energy 52 (2018) 105-116.
DOI URL |
[25] |
Y.H. Pi, S. Jin, X.Y. Li, S. Tu, Z. Li, J. Xiao, Appl. Catal. B Environ. 256 (2019) 117882.
DOI URL |
[26] |
Y. Yusran, D. Xu, Q.R. Fang, D.L. Zhang, S.L. Qiu, Microporous Mesoporous Mater. 241 (2017) 346-354.
DOI URL |
[27] |
J. Yang, F.J. Zhang, H.Y. Lu, X. Hong, H.L. Jiang, Y. Wu, Y.D. Li, Angew. Chem. Int. Ed. 54 (2015) 10889-10893.
DOI PMID |
[28] |
J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, J. Am. Chem. Soc. 137 (2015) 1572-1580.
DOI URL |
[29] |
F.L. Meng, H.X. Zhong, D. Bao, J.M. Yan, X.B. Zhang, J. Am. Chem. Soc. 138 (2016) 10226-10231.
DOI URL |
[30] |
Q.J. Ji, L.H. Pan, J.X. Xu, C. Wang, L. Wang, ACS Appl. Nano Mater. 3 (2020) 3558-3567.
DOI URL |
[31] |
H.L. Chen, K. Shen, J.Y. Chen, X.D. Chen, Y.W. Li, J. Mater. Chem. A 5 (2017) 9937-9945.
DOI URL |
[32] | M. Zhang, C.M. Xiao, C. Zhang, J.W. Qi, C.H. Wang, X.Y. Sun, L.J. Wang, Q. Xu, J.S. Li, ACS ES&T Eng. 1 (2021) 249-260. |
[33] |
X.Y. Li, C.M. Zeng, J. Jiang, L.H. Ai, J. Mater. Chem. A 4 (2016) 7476-7482.
DOI URL |
[34] |
B.C. Qiu, M.Y. Xing, J.L. Zhang, Chem. Soc. Rev. 47 (2018) 2165-2216.
DOI URL |
[35] |
J.N. Qin, S.B. Wang, X.C. Wang, Appl. Catal. B Environ. 209 (2017) 476-482.
DOI URL |
[36] |
H.Y. Jing, X.D. Song, S.Z. Ren, Y.T. Shi, Y.L. An, Y. Yang, M.Q. Feng, S.B. Ma, C. Hao, Electrochim. Acta 213 (2016) 252-259.
DOI URL |
[37] |
J.L. Chang, Y.F. Wang, L.M. Chen, D.P. Wu, F. Xu, Z.Y. Bai, K. Jiang, Z.Y. Gao, Int. J. Hydrog. Energy 45 (2020) 12787-12797.
DOI URL |
[38] |
W. Zhong, H.L. Liu, C.H. Bai, S.J. Liao, Y.W. Li, ACS Catal. 5 (2015) 1850-1856.
DOI URL |
[39] |
J. Xu, Q.Z. Gao, X.J. Bai, Z.P. Wang, Y.F. Zhu, Catal. Today 332 (2019) 227-235.
DOI URL |
[40] |
H.J. Meng, Y.M. Liu, H.R. Liu, S.P. Pei, X.X. Yuan, H. Li, Y.M. Zhang, ACS Appl. Mater. Interfaces 12 (2020) 41580-41589.
DOI URL |
[41] |
W.D. Dai, L. Jiang, J. Wang, Y.J. Pu, Y.F. Zhu, Y.X. Wang, B.B. Xiao, Chem. Eng. J. 397 (2020) 125476.
DOI URL |
[42] |
J.W. Jeon, R. Sharma, P. Meduri, B.W. Arey, H.T. Schaef, J.L. Lutkenhaus, J.P. Lem-mon, P.K. Thallapally, M.I. Nandasiri, B.P. McGrail, S.K. Nune, ACS Appl. Mater. Interfaces 6 (2014) 7214-7222.
DOI URL |
[43] |
Y.B. Li, Z.L. Jin, T.S. Zhao, Chem. Eng. J. 382 (2020) 123051.
DOI URL |
[44] |
Y. Liang, J. Wei, Y.X. Hu, X.F. Chen, J. Zhang, X.Y. Zhang, S.P. Jiang, S.W. Tao, H.T. Wang, Nanoscale 9 (2017) 5323-5328.
DOI PMID |
[45] |
G. Huang, W.L. Wang, X.X. Ning, Y. Liu, S.K. Zhao, Y.A. Guo, S.J. Wei, H. Zhou, Ind. Eng. Chem. Res. 55 (2016) 2959-2969.
DOI URL |
[46] |
X.Y. Li, J.A. Li, Y. Shi, M.M. Zhang, S.Y. Fan, Z.F. Yin, M.C. Qin, T.T. Lian, X.Y. Li, J. Colloid Interface Sci. 528 (2018) 45-52.
DOI URL |
[47] |
Q.Q. Mu, W. Zhu, G.B. Yan, Y.B. Lian, Y.Z. Yao, Q. Li, Y.Y. Tian, P. Zhang, Z. Deng, Y. Peng, J. Mater. Chem. A 6 (2018) 21110-21119.
DOI URL |
[48] |
R. Li, X.Z. Wang, Y.F. Dong, X. Pan, X.G. Liu, Z.B. Zhao, J.S. Qiu, Carbon 132 (2018) 580-588.
DOI URL |
[49] |
E.S. Da Silva, N.M.M. Moura, M. Neves, A. Coutinho, M. Prieto, C.G. Silva, J.L. Faria, Appl. Catal. B Environ. 221 (2018) 56-69.
DOI URL |
[50] |
W.F. Liu, Z.H. Zhou, Z. Li, Y. Yang, J. Zhao, Y.M. Zhu, W.J. Miao, J. Environ. Chem. Eng. 9 (2021) 104582.
DOI URL |
[51] |
M.L. Sun, S.N. Yun, J. Shi, Y.W. Zhang, A. Arshad, J.E. Dang, L.S. Zhang, X. Wang, Z.L. Liu, Small 17 (2021) 2102300.
DOI URL |
[52] |
J.J. Zhao, X. Quan, S. Chen, Y.M. Liu, H.T. Yu, ACS Appl. Mater. Interface 9 (2017) 28685-28694.
DOI URL |
[53] |
Y.C. Fen, W.L. Jia, G.H. Yan, X.H. Zeng, J. Sperry, B.B. Xu, Y. Sun, T.Z. Lei, L. Lin, J. Catal. 381 (2020) 570-578.
DOI URL |
[54] |
N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, Y. Yamauchi, Small 10 (2014) 2096-2107.
DOI PMID |
[55] |
Y.K. Sun, Q. Zhu, B. Bai, Y.L. Li, C. He, Chem. Eng. J. 390 (2020) 124518.
DOI URL |
[56] |
X.J. Chen, Y.Z. Dai, X.Y. Wang, J. Guo, T.H. Liu, F.F. Li, J. Hazard. Mater. 292 (2015) 9-18.
DOI URL |
[57] |
J. Jimenez-Villarin, A. Serra-Clusellas, C. Martinez, A. Conesa, J. Garcia-Mon-tano, E. Moyano, J. Chromatogr. A 1443 (2016) 201-210.
DOI PMID |
[58] |
J. Xu, Z.P. Wang, Y.F. Zhu, ACS Appl. Mater. Interface 9 (2017) 27727-27735.
DOI URL |
[59] | S. Intermite, C. Arbizzani, F. Soavi, S. Gholipour, S.H. Turren-Cruz, J.P. Cor-rea-Baena, M. Saliba, N. Vlachopoulos, A.M. Ali, A. Hagfeldt, M. Graetzel, Elec- trochim. Acta 258 (2017) 825-833. |
[60] |
Y. Zhang, M. Zhu, S. Xu, H.H. Zhou, H.C. Qi, H.G. Wang, Electrochim. Acta 353 (2020) 136499.
DOI URL |
[61] |
J. Xu, M. Fujitsuka, S. Kim, Z.P. Wang, T. Majima, Appl. Catal. B Environ. 241 (2019) 141-148.
DOI URL |
[62] |
D. Liu, J. Wang, X.J. Bai, R.L. Zong, Y.F. Zhu, Adv. Mater. 28 (2016) 7284-7290.
DOI URL |
[63] |
J. Wang, D. Liu, Y.F. Zhu, S.Y. Zhou, S.Y. Guan, Appl. Catal. B Environ. 231 (2018) 251-261.
DOI URL |
[1] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
[2] | Shijie Li, Mingjie Cai, Chunchun Wang, Yanping Liu, Neng Li, Peng Zhang, Xin Li. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight [J]. J. Mater. Sci. Technol., 2022, 123(0): 177-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||