J. Mater. Sci. Technol. ›› 2022, Vol. 121: 220-226.DOI: 10.1016/j.jmst.2022.01.006
• Research Article • Previous Articles Next Articles
Yidu Wanga, Jingnan Dinga, Jun Zhaoa, Jiajun Wanga,c,*(), Xiaopeng Hana, Yida Denga,b,*(
), Wenbin Hua,c
Received:
2021-10-12
Revised:
2022-01-18
Accepted:
2022-01-20
Published:
2022-09-10
Online:
2022-03-06
Contact:
Jiajun Wang,Yida Deng
About author:
yida.deng@tju.edu.cn (Y. Deng).Yidu Wang, Jingnan Ding, Jun Zhao, Jiajun Wang, Xiaopeng Han, Yida Deng, Wenbin Hu. Selective electrocatalytic reduction of CO2 to formate via carbon-shell-encapsulated In2O3 nanoparticles/graphene nanohybrids[J]. J. Mater. Sci. Technol., 2022, 121: 220-226.
Fig. 1. (a) Schematic illustration for the preparation of In2O3?NC@GO. (b) XRD patterns of different samples. (c) Scanning electron microscopy (SEM) and (d) transmission electron microscopy (TEM) images (inset: the histogram of particle size distribution) of In2O3?NC@GO. HRTEM images of (e) In2O3?NC@GO and (f) In2O3@GO. (g) Elemental mapping images of C, N, In, and O elements in In2O3?NC@GO.
Fig. 2. (a) O 1 s XPS spectra of In2O3?NC@GO and In2O3@GO. (b) In 3d XPS spectra of In2O3?NC@GO and In2O3@GO. (c) High-resolution N 1 s XPS spectra of In2O3?NC@GO. (d) High-resolution C 1 s XPS spectra of In2O3?NC@GO. (e) Electron spin resonance spectra of In2O3?NC@GO and In2O3@GO. (f) Raman spectrum in 200-800 cm-1 of In2O3?NC@GO.
Fig. 3. (a) Polarization curves of In2O3?NC@GO, In2O3@GO, and NC@GO in CO2-saturated KHCO3 solutions. (b) FE values for HCOO-, and (c) FE values for H2 of In2O3?NC@GO, In2O3@GO, and NC@GO in a CO2-saturated 0.5 M KHCO3 electrolyte. (d) Geometrical HCOO- partial current densities. (e) Schematic illustration of the flow cell used in this work. (f) HCOO- Faradaic efficiency in the flow cell. (g) HCOO- current density of In2O3?NC@GO in different cells. (h) Comparison of JHCOO- at -0.8 V vs RHE of various In-based CO2RR catalysts. (i) 10 h electrolysis of In2O3?NC@GO at -0.6 V.
Fig. 4. (a) Cd1 of tested catalysts. (b) ECSA-normalized HCOO- partial current density of tested catalysts. (c) Tafel slopes of In2O3?NC@GO, In2O3@GO, and NC@GO. (d) CO2-TPD profiles of the In2O3?NC@GO and In2O3@GO. (e) Nyquist plots of tested catalysts. (f) Scheme of the CO2 processes in In2O3?NC@GO.
[1] |
H.J. Cui, Y.B. Guo, L.M. Guo, L. Wang, Z. Zhou, Z.Q. Peng, J. Mater. Chem. A 6 (2018) 18782-18793.
DOI URL |
[2] |
M.Y. Lee, K.T. Park, W. Lee, H. Lim, Y. Kwon, S. Kang, Crit. Rev. Environ. Sci. Technol. 50 (2019) 769-815.
DOI URL |
[3] |
J.Y. Ye, C.J. Liu, Q.F. Ge, J. Phys. Chem. C 116 (2012) 7817-7825.
DOI URL |
[4] | Q. He, J.H. Lee, D.B. Liu, Y.M. Liu, Z.X. Lin, Z.H. Xie, S.H. Wang, S. Kattel, L. Song, J.G. Chen, Adv. Funct. Mater. 30 (2020) 20 0 0407. |
[5] |
J.T. Billy, A.C. Co, Appl. Catal. B Environ. 237 (2018) 911-918.
DOI URL |
[6] |
J. Kim, W. Choi, J.W. Park, C. Kim, M. Kim, H. Song, J. Am. Chem. Soc. 141 (2019) 6986-6994.
DOI URL |
[7] |
M.W. Jia, C. Choi, T.S. Wu, C. Ma, P. Kang, H.C. Tao, Q. Fan, S. Hong, S.Z. Liu, Y.L. Soo, Y.S. Jung, J.S. Qiu, Z.Y. Sun, Chem. Sci. 9 (2018) 8775-8780.
DOI URL |
[8] |
S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Angew. Chem. Int. Ed. 58 (2019) 13828-13833.
DOI URL |
[9] |
S. Zhang, Q. Fan, R. Xia, T.J. Meyer, Acc. Chem. Res. 53 (2020) 255-264.
DOI URL |
[10] |
C.Z. Yuan, H.B. Li, Y.F. Jiang, K. Liang, S.J. Zhao, X.X. Fang, L.B. Ma, T. Zhao, C. Lin, A.W. Xu, J. Mater. Chem. A 7 (2019) 6894-6900.
DOI URL |
[11] | G.B. Liu, Z.H. Li, J.J. Shi, K. Sun, Y.J. Ji, Z.G. Wang, Y.F. Qiu, Y.Y. Liu, Z.J. Wang, P.A. Hu, Appl. Catal. B Environ. 260 (2020) |
[12] | G.B. Wen, D.U. Lee, B.H. Ren, F.M. Hassan, G.P. Jiang, Z.P. Cano, J. Gostick, E. Croiset, Z.Y. Bai, L. Yang, Z.W. Chen, Adv. Energy Mater. 8 (2018) |
[13] |
F.H. Ye, J.H. Gao, Y.L. Chen, Y.M. Fang, Sustain. Energy Fuels 4 (2020) 3726-3731.
DOI URL |
[14] |
J.Y. Li, M.H. Zhu, Y.F. Han, ChemCatChem 13 (2021) 514-531.
DOI URL |
[15] | N. Han, P. Ding, L. He, Y.Y. Li, Y.G. Li, Adv. Energy Mater. 10 (2020) |
[16] |
M. Al-Mamun, X.T. Su, H.M. Zhang, H.J. Yin, P.R. Liu, H.G. Yang, D. Wang, Z.Y. Tang, Y. Wang, H.J. Zhao, Small 12 (2016) 2866-2871.
DOI URL |
[17] |
W.Z. Zheng, C.X. Guo, J. Yang, F. He, B. Yang, Z.J. Li, L.C. Lei, J.P. Xiao, G. Wu, Y. Hou, Carbon 150 (2019) 52-59.
DOI URL |
[18] |
D.F. Gao, Y. Zhang, Z.W. Zhou, F. Cai, X.F. Zhao, W.G. Huang, Y.S. Li, J.F. Zhu, P. Liu, F. Yang, G.X. Wang, X.H. Bao, J. Am. Chem. Soc. 139 (2017) 5652-5655.
DOI URL |
[19] | K. Jiang, S. Siahrostami, A.J. Akey, Y.B. Li, Z.Y. Lu, J. Lattimer, Y.F. Hu, C. Stokes, M. Gangishetty, G.X. Chen, Y.W. Zhou, W. Hill, W.B. Cai, D. Bell, K.R. Chan, J.K. Nørskov, Y. Cui, H.T. Wang, Chemistry 3 (2017) 950-960. |
[20] |
Z.R. Zhang, F. Ahmad, W.H. Zhao, W.S. Yan, W.H. Zhang, H.W. Huang, C. Ma, J. Zeng, Nano Lett. 19 (2019) 4029-4034.
DOI URL |
[21] | Q. Zhang, Y.X. Zhang, J.F. Mao, J.Y. Liu, Y. Zhou, D. Guay, J.L. Qiao, Chem-SusChem 12 (2019) 1443-1450. |
[22] | Y. Hou, Y.L. Liang, P.C. Shi, Y.B. Huang, R. Cao, Appl. Catal. B Enviromn. 271 (2020) |
[23] |
L. Zhang, F.X. Mao, L.R. Zheng, H.F. Wang, X.H. Yang, H.G. Yang, ACS Catal. 8 (2018) 11035-11041.
DOI URL |
[24] |
J.S. Meng, Z. Liu, C.J. Niu, L.H. Xu, X.P. Wang, Q. Li, X.J. Wei, W. Yang, L. Huang, L.Q. Mai, Mater. Horiz. 5 (2018) 78-85.
DOI URL |
[25] |
H.S. Wang, X.L. Qiao, J.G. Chen, X.J. Wang, S.Y. Ding, Mater. Chem. Phys. 94 (2005) 449-453.
DOI URL |
[26] | D. Bin, F.F. Ren, H.W. Wang, K. Zhang, B.B. Yang, C.Y. Zhai, M.S. Zhu, P. Yang, Y.K. Du, RSC Adv. 4 (2014) |
[27] |
E. Bayrakdar, T.G. Altınçekiç, M.A.F. Öksüzömer, Fuel Process. Technol. 110 (2013) 167-175.
DOI URL |
[28] |
J. Zhang, R. Yin, Q. Shao, T. Zhu, X. Huang, Angew. Chem. Int. Ed. 58 (2019) 5609-5613.
DOI URL |
[29] |
J. Wu, X.D. Li, W. Shi, P.Q. Ling, Y.F. Sun, X.C. Jiao, S. Gao, L. Liang, J.Q. Xu, W.S. Yan, C.M. Wang, Y. Xie, Angew. Chem. Int. Ed. 57 (2018) 8719-8723.
DOI URL |
[30] |
F.C. Lei, Y.F. Sun, K.T. Liu, S. Gao, L. Liang, B.C. Pan, Y. Xie, J. Am. Chem. Soc. 136 (2014) 6 826-6 829.
DOI URL |
[31] |
A. Prim, E. Pellicer, E. Rossinyol, F. Peiró, A. Cornet, J.R. Morante, Adv. Funct. Mater. 17 (2007) 2957-2963.
DOI URL |
[32] |
Y. Yu, X.Y. Qiu, X.X. Zhang, Z.X. Wu, H.T. Wang, W. Wang, Z.Y. Wang, H. Tan, Z. Peng, X.P. Guo, H.F. Liu, Electrochim. Acta 299 (2019) 423-429.
DOI URL |
[33] |
Y.F. Song, J. Yang, K. Wang, S. Haller, Y.G. Wang, C.X. Wang, Y.Y. Xia, Carbon 96 (2016) 955-964.
DOI URL |
[34] | B.H. Chen, X.B. He, F.X. Yin, H. Wang, D.J. Liu, R.X. Shi, J. Chen, H.W. Yin, Adv. Funct. Mater. 37 (2017) |
[35] | N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C.J. Liu, Appl. Catal. B Environ. 218 (2017) 4 88-4 97. |
[36] |
X.Y. Jia, K.H. Sun, J. Wang, C.Y. Shen, C.J. Liu, J. Energy Chem. 50 (2020) 409-415.
DOI URL |
[37] |
K.H. Sun, N. Rui, Z.T. Zhang, Z.Y. Su, Q.F. Ge, C.J. Liu, Green Chem. 22 (2020) 5059-5066.
DOI URL |
[38] |
T. Xia, W. Zhang, Z.H. Wang, Y.L. Zhang, X.Y. Song, J. Murowchick, V. Battaglia, G. Liu, X.B. Chen, Nano Energy 6 (2014) 109-118.
DOI URL |
[39] |
C.W. Li, J. Ciston, M.W. Kanan, Nature 508 (2014) 504-507.
DOI URL |
[40] |
L. Sun, V. Reddu, A.C. Fisher, X. Wang, Energy Environ. Sci. 13 (2020) 374-403.
DOI URL |
[1] | Kaiqiang Xu, Jie Shen, Shiying Zhang, Difa Xu, Xiaohua Chen. Efficient interfacial charge transfer of BiOCl-In2O3 step-scheme heterojunction for boosted photocatalytic degradation of ciprofloxacin [J]. J. Mater. Sci. Technol., 2022, 121(0): 236-244. |
[2] | Chenxi Wang, Zirui Jia, Shuangqiao He, Jixi Zhou, Shuo Zhang, Mengli Tian, Bingbing Wang, Guanglei Wu. Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation [J]. J. Mater. Sci. Technol., 2022, 108(0): 236-243. |
[3] | Jian Chen, Zhen Hu, Yang Ou, Qinghua Zhang, Xiaopeng Qi, Lin Gu, Tongxiang Liang. Interfacial engineering regulated by CeOx to boost efficiently alkaline overall water splitting and acidic hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2022, 120(0): 129-138. |
[4] | Mingxing Liang, Yongcong Huang, Yuda Lin, Guisheng Liang, Cihui Huang, Lan Chen, Jiaxin Li, Qian Feng, Chunfu Lin, Zhigao Huang. Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage [J]. J. Mater. Sci. Technol., 2021, 83(0): 66-74. |
[5] | Jiashen Meng, Ziang Liu, Xiong Liu, Wei Yang, Lianzhou Wang, Yan Li, Yuan-Cheng Cao, Xingcai Zhang, Liqiang Mai. Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction [J]. J. Mater. Sci. Technol., 2021, 66(0): 186-192. |
[6] | Jin Liu, Sheng Guo, Hongzhang Wu, Xinlei Zhang, Jun Li, Kun Zhou. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis [J]. J. Mater. Sci. Technol., 2021, 85(0): 1-10. |
[7] | Na Li, Fei Chen, Xiangtao Chen, Zhongxu Chen, Yang Qi, Xiaodong Li, Xudong Sun. A bipolar modified separator using TiO2 nanosheets anchored on N-doped carbon scaffold for high-performance Li-S batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 152-158. |
[8] | Liang Chen, Zhi Li, Gangyong Li, Minjie Zhou, Binhong He, Jie Ouyang, Wenyuan Xu, Wei Wang, Zhaohui Hou. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability [J]. J. Mater. Sci. Technol., 2020, 44(0): 229-236. |
[9] | Dongha Im, Donghyun Kim, Dasol Jeong, Woon Ik Park, Myoungpyo Chun, Joon-Shik Park, Hyunjung Kim, Hyunsung Jung. Improved formaldehyde gas sensing properties of well-controlled Au nanoparticle-decorated In2O3 nanofibers integrated on low power MEMS platform [J]. J. Mater. Sci. Technol., 2020, 38(0): 56-63. |
[10] | Kim Hyegyeong, Kim JiWoong, Lee Dooyong, Lee Won-Jae, Bae Jong-Seong, Lee Jaekwang, Park Sungkyun. Spectroscopic Understanding of Structural and Electrical Property Variations in Dopant-Free ZnO Films [J]. J. Mater. Sci. Technol., 2017, 33(6): 523-526. |
[11] | Sadat-Shojai Mehdi. Electrospun Polyhydroxybutyrate/Hydroxyapatite Nanohybrids: Microstructure and Bone Cell Response [J]. J. Mater. Sci. Technol., 2016, 32(10): 1013-1020. |
[12] | Amandeep Kaur Bal, Rajinder Singh, R.K. Bedi. Effect of Ni7+ Ion Irradiation on Structure and Ammonia Sensing Properties of Thermally Oxidized Zinc and Indium Films [J]. J Mater Sci Technol, 2012, 28(8): 700-706. |
[13] | Huiling Tai, Yadong Jiang, Guangzhong Xie, Junsheng Yu. Preparation, Characterization and Comparative NH3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films [J]. J Mater Sci Technol, 2010, 26(7): 605-613. |
[14] | Q.H.Zeng, A.B.Yu, G.Q.Lu, R.K.St, ish. Interfacial Interactions and Structure of Organic-Inorganic Nanohybrids [J]. J Mater Sci Technol, 2005, 21(Supl.1): 114-118. |
[15] | Baoshan LI, Zhigang ZHU, Guorong LI, Aili DING. Microstructure and Electromechanical Properties in PMnN-PZT Ceramics Sintered at Different Temperatures [J]. J Mater Sci Technol, 2005, 21(03): 386-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||