J. Mater. Sci. Technol. ›› 2022, Vol. 120: 65-77.DOI: 10.1016/j.jmst.2021.10.055
• Research Article • Previous Articles Next Articles
S.M. Lia,b, L.B. Fua,b, W.L. Zhanga,b, W. Lib,*(
), J. Sunc, T.G. Wangd, S.M. Jiangb,*(
), J. Gongb, C. Sunb,*(
)
Received:2021-07-30
Revised:2021-10-10
Accepted:2021-10-20
Published:2022-09-01
Online:2022-02-24
Contact:
W. Li,S.M. Jiang,C. Sun
About author:* E-mail addresses: wli@imr.ac.cn (W. Li),S.M. Li, L.B. Fu, W.L. Zhang, W. Li, J. Sun, T.G. Wang, S.M. Jiang, J. Gong, C. Sun. Formation process and oxidation behavior of MCrAlY + AlSiY composite coatings on a Ni-based superalloy[J]. J. Mater. Sci. Technol., 2022, 120: 65-77.
| Empty Cell | NiCrAlYSi target | AlSiY target |
|---|---|---|
| Arc voltage (V) | 19-21 | 19-21 |
| Arc current (A) | 80-90 | 80-90 |
| Bias voltage (-V) | 160 | 120 |
| Bias duty cycle (%) | 30 | 30 |
| Target-substrate distance(mm) | 120 | 120 |
| Air pressure (Pa) | 0.22-0.24 | 0.3 |
| Temperature (°C) | 300-400 | 300-400 |
Table 1. Deposition parameters of arc ion plating.
| Empty Cell | NiCrAlYSi target | AlSiY target |
|---|---|---|
| Arc voltage (V) | 19-21 | 19-21 |
| Arc current (A) | 80-90 | 80-90 |
| Bias voltage (-V) | 160 | 120 |
| Bias duty cycle (%) | 30 | 30 |
| Target-substrate distance(mm) | 120 | 120 |
| Air pressure (Pa) | 0.22-0.24 | 0.3 |
| Temperature (°C) | 300-400 | 300-400 |
Fig. 2. Cross-sectional morphologies of C1 during annealing process, (a) as-deposited, (b) heated to 700 °C, (c) heated to 900 °C, (d) heated to 1000 °C and held for 30 min, (e) at the ending of annealing, (f-h) bright-field images of precipitates in the outermost layer of annealed C1.
| Location | Average composition | ||||||
|---|---|---|---|---|---|---|---|
| Al | Si | Cr | Co | Ni | W | Ti | |
| zone 1 in the C1 | 45.4 | 1 | 5.2 | 5.4 | 38.1 | 3.4 | 1.5 |
| zone 2 in the C1 | 40 | 1 | 6.4 | 6.4 | 39.1 | 5.4 | 1.7 |
| zone 3 in the C1 | 34.1 | 2.1 | 6.4 | 7.3 | 40.4 | 8.6 | 2.1 |
| zone 4 in the C1 | 24.1 | 1.3 | 6.4 | 8.4 | 50.7 | 8.1 | 1 |
| zone 5 in the C1 | 24.1 | 1.7 | 7.8 | 8 | 49.3 | 7.6 | 1.4 |
| zone 6 in the C1 | 23.4 | — | 4.5 | 9.3 | 60 | 2.8 | — |
| zone 1 in the C2 | 43.5 | 2.1 | 14 | — | 40.4 | — | — |
| zone 2 in the C2 | 33.3 | 3.4 | 17 | — | 46.3 | — | — |
| zone 3 in the C2 | 39.6 | 0.6 | 13.4 | — | 46.4 | — | — |
| zone 4 in the C2 | 35.4 | 0.4 | 15.7 | — | 48.5 | — | — |
| zone 7 in the C2 | 24.8 | 3 | 16.4 | — | 55.8 | — | — |
| zone 8 in the C2 | 25.4 | 0.3 | 11.8 | 0.7 | 61.8 | — | — |
| zone 10 in the C2 | 23.7 | 3 | 16.3 | 0.7 | 56.3 | — | — |
| zone 11 in the C2 | 15 | — | 29.9 | 4.6 | 48.3 | 2.3 | — |
| zone 5 in the C3 | 21.8 | 1.8 | 14 | 0.4 | 62 | — | — |
| zone 6 in the C3 | 13.6 | — | 32.1 | 2.6 | 49.6 | 2.1 | — |
Table 2. The average compositions of coatings (wt.%).
| Location | Average composition | ||||||
|---|---|---|---|---|---|---|---|
| Al | Si | Cr | Co | Ni | W | Ti | |
| zone 1 in the C1 | 45.4 | 1 | 5.2 | 5.4 | 38.1 | 3.4 | 1.5 |
| zone 2 in the C1 | 40 | 1 | 6.4 | 6.4 | 39.1 | 5.4 | 1.7 |
| zone 3 in the C1 | 34.1 | 2.1 | 6.4 | 7.3 | 40.4 | 8.6 | 2.1 |
| zone 4 in the C1 | 24.1 | 1.3 | 6.4 | 8.4 | 50.7 | 8.1 | 1 |
| zone 5 in the C1 | 24.1 | 1.7 | 7.8 | 8 | 49.3 | 7.6 | 1.4 |
| zone 6 in the C1 | 23.4 | — | 4.5 | 9.3 | 60 | 2.8 | — |
| zone 1 in the C2 | 43.5 | 2.1 | 14 | — | 40.4 | — | — |
| zone 2 in the C2 | 33.3 | 3.4 | 17 | — | 46.3 | — | — |
| zone 3 in the C2 | 39.6 | 0.6 | 13.4 | — | 46.4 | — | — |
| zone 4 in the C2 | 35.4 | 0.4 | 15.7 | — | 48.5 | — | — |
| zone 7 in the C2 | 24.8 | 3 | 16.4 | — | 55.8 | — | — |
| zone 8 in the C2 | 25.4 | 0.3 | 11.8 | 0.7 | 61.8 | — | — |
| zone 10 in the C2 | 23.7 | 3 | 16.3 | 0.7 | 56.3 | — | — |
| zone 11 in the C2 | 15 | — | 29.9 | 4.6 | 48.3 | 2.3 | — |
| zone 5 in the C3 | 21.8 | 1.8 | 14 | 0.4 | 62 | — | — |
| zone 6 in the C3 | 13.6 | — | 32.1 | 2.6 | 49.6 | 2.1 | — |
Fig. 4. Cross-sectional morphologies of C2 during annealing process, (a) as-deposited, (b) heated to 700 °C, (c) heated to 900 °C, (d) heated to 1000 °C and held for 30 min, (e) at the ending of annealing, (f, g) bright-field images of annealed C2.
Fig. 6. Cross-sectional morphologies of C3 during annealing process, (a) as-deposited, (b) heated to 700 °C, (c) heated to 900 °C, (d) heated to 1000 °C and held for 30 min, (e) at the ending of annealing.
Fig. 8. Isothermal oxidation kinetic curves for coatings at 1100 °C, (a) total mass change, (b) square of mass gain versus oxidation time of coating, which displayed the oxidation rate constant (kp).
| [1] | J.T. Demasimarcin, D.K. Gupta, Surf. Coat. Technol. 68 (1994) 1-9. |
| [2] | G.W. Goward, Surf. Coat. Technol. 108 (1998) 73-79. |
| [3] | L. Liu, J. Zhang, C. Ai, Encyclopedia of Materials: Metals and Alloys 1 (2022) 294-304. |
| [4] |
M.J. Pomeroy, Mater. Des. 26 (2005) 223-231.
DOI URL |
| [5] |
D.G. Backman, J.C. Williams, Science 255 (1992) 1082-1087.
URL PMID |
| [6] |
H.S. Kitaguchi, H.Y. Li, H.E. Evans, R.G. Ding, I.P. Jones, G. Baxter, P. Bowen, Acta Mater. 61 (2013) 1968-1981.
DOI URL |
| [7] |
H.T. Mallikarjuna, W.F. Caley, N.L. Richards, Corros. Sci. 147 (2019) 394-405.
DOI URL |
| [8] |
Y. Wu, Y. Li, Y. Xu, M. Kang, J. Wang, B. Sun, Acta Mater. 211 (2021) 116879.
DOI URL |
| [9] |
D.V. Mashtalyar, I.M. Imshinetskiy, K.V. Nadaraia, A.S. Gnedenkov, S.L. Sine- bryukhov, A.Y. Ustinov, A.V. Samokhin, S.V. Gnedenkov, J. Magnes. Alloy. 6 (2021) 1-13.
DOI URL |
| [10] | D. Mashtalyar, K. Nadaraia, S. Sinebryukhov, S. Gnedenkov, B. Dikici, Mater. Today 11 (2019) 150-154. |
| [11] | M. Kaseem, K. Ramachandraiah, S. Hossain, B. Dikici, Nurs. Midwifery Stud. 11 (2021) 536. |
| [12] | C. Leyens, B.A. Pint, I.G. Wright, Surf. Coat. Technol. 133 (2000) 15-22. |
| [13] |
B.A. Pint, J.A. Haynes, T.M. Besmann, Surf. Coat. Technol. 204 (2010) 3287-3293.
DOI URL |
| [14] |
Y. Chen, X. Zhao, P. Xiao, Acta Mater. 159 (2018) 150-162.
DOI URL |
| [15] |
G.H. Meng, H. Liu, M.J. Liu, T. Xu, G.J. Yang, C.X. Li, C.J. Li, Corros. Sci. 163 (2020) 108275.
DOI URL |
| [16] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
URL PMID |
| [17] |
Y.H. Zhou, X.F. Zhao, C.S. Zhao, W. Hao, X. Wang, P. Xiao, Corros. Sci. 123 (2017) 103-115.
DOI URL |
| [18] |
C.Y. Jiang, Y.F. Yang, Z.Y. Zhang, Z.B. Bao, M.H. Chen, S.L. Zhu, F.H. Wang, Corros. Sci. 133 (2018) 406-416.
DOI URL |
| [19] |
Y.Q. Wang, M. Suneson, G. Sayre, Surf. Coat. Technol. 206 (2011) 1218-1228.
DOI URL |
| [20] |
L.Y. Ye, H.F. Chen, G. Yang, B. Liu, Y.F. Gao, Prog. Nat. Sci. 28 (2018) 34-39.
DOI URL |
| [21] |
W. Li, J. Sun, S.B. Liu, Y.D. Liu, L.B. Fu, T.G. Wang, S.M. Jiang, J. Gong, C. Sun, Corros. Sci. 164 (2020) 108354.
DOI URL |
| [22] |
H. Liu, S. Li, C.Y. Jiang, C.T. Yu, Z.B. Bao, S.L. Zhu, F.H. Wang, Corros. Sci. 168 (2020) 108582.
DOI URL |
| [23] |
D. Texier, D. Monceau, S. Selezneff, A. Longuet, E. Andrieu, Metall. Mater. Trans. A 51 (2020) 1475-1480.
DOI URL |
| [24] | H. Zahedi, F.S. Nogorani, M.Safari, Met.Mater.Int. 27 (2021) 922-930. |
| [25] | Y.Q. Li, B. Tang, G.H. Geng, N.M. Lin, J.F. Hou, C. Qin, Rare Metal Mater. Eng. 46 (2017) 3388-3393. |
| [26] |
S.A. Azarmehr, K. Shirvani, A. Solimani, M. Schutze, M.C. Galetz, Surf. Coat. Technol. 362 (2019) 252-261.
DOI URL |
| [27] |
M. Zagula-Yavorska, J. Morgiel, J. Romanowska, J. Sieniawski, J. Microsc. 261 (2016) 320-325.
DOI URL |
| [28] |
S.M. Jiang, C.Z. Xu, H.Q. Li, S.C. Liu, J. Gong, C. Sun, Corros. Sci. 52 (2010) 435-440.
DOI URL |
| [29] |
R.D. Liu, S.M. Jiang, H.J. Yu, J. Gong, C. Sun, Corros. Sci. 104 (2016) 162-172.
DOI URL |
| [30] |
W. Li, L.B. Fu, Y.D. Liu, WL. Zhang, T.G. Wang, S.M. Jiang, J. Gong, C. Sun, Corros. Sci. 176 (2020) 108892.
DOI URL |
| [31] |
S.M. Jiang, X. Peng, Z.B. Bao, S.C. Liu, Q.M. Wang, J. Gong, C. Sun, Corros. Sci. 50 (2008) 3213-3220.
DOI URL |
| [32] |
T. Kubaszek, M. Pytel, M. Góral, Mater. Sci. Forum 844 (2016) 181-186.
DOI URL |
| [33] |
W. Brandl, G. Marginean, N. Marginean, V. Chirila, D. Utu, Corros. Sci. 49 (2007) 3765-3771.
DOI URL |
| [34] |
X. Peng, S.M. Jiang, J. Gong, X.D. Sun, C. Sun, J. Mater. Sci. Technol. 32 (2016) 587-592.
DOI URL |
| [35] | L. Swadzba, A. Maciejny, B. Mendala, Superalloys (2000) 693-701. |
| [36] | W.F. Gale, J.E. King, Surf. Coat. Technol. 54 (1992) 8-12. |
| [37] |
V.K. Tolpygo, D.R. Clarke, Acta Mater. 48 (2000) 3283-3293.
DOI URL |
| [38] |
A.J. Hickl, R.W. Heckel, Metall. Trans. A 6 (1975) 431-440.
DOI URL |
| [39] |
M.Z. Mehrizi, M. Shamanian, A. Saidi, Ceram. Int. 40 (2014) 9493-9498.
DOI URL |
| [40] | K. Peng, M.Z. Yi, L.P. Ran, Rare Metal Mat. Eng. 35 (2006) 554-558. |
| [41] |
E. Emeric, C. Bergman, G. Glugnet, P. Gas, M. Audier, Philos. Mag. Lett. 78 (1998) 77-85.
DOI URL |
| [42] |
C.C. Jia, K. Ishida, T. Nishizawa, Metall. Mater. Trans. A 25 (1994) 473-485.
DOI URL |
| [43] | T. Narita, T. Izumi, T. Nishimoto, Y. Shibata, K.Z. Thosin, S. Hayashi, Mater. Sci. Forum 522-523 (2006) 1-14. |
| [44] | N.M. Yanar, The Failure of thermal barrier coatings at elevated temperatures, University of Pittsburgh, 2004, pp. 54-58. |
| [45] |
G. Eggeler, W. Auer, H. Kaesche, J. Mater. Sci. 21 (1986) 3348-3350.
DOI URL |
| [46] | L. Liu, F. Yang, Y. Wu, Heat Treat. Met. 41 (2016) 79-83. |
| [47] | H.Z. Yang, J.P. Zou, Q.L. Shi, S. Song, M.J. Dai, D. Wang, Rare Metal Mater. Eng. 49 (2020) 2240-2249. |
| [48] |
V.K. Tolpygo, D.R. Clarke, Mater. High Temp. 17 (2000) 59-70.
DOI URL |
| [49] |
R.D. Liu, S.M. Jiang, C.Q. Guo, J. Gong, C. Sun, Corros. Sci. 120 (2017) 121-129.
DOI URL |
| [50] |
J. He, D.R. Clarke, J. Am. Ceram. Soc. 78 (1995) 1347-1353.
DOI URL |
| [51] |
J. Lu, L. Li, H. Zhang, Y. Chen, L.R. Luo, X.F. Zhao, F.W. Guo, P. Xiao, Corros. Sci. 181 (2021) 109257.
DOI URL |
| [1] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
| [2] | Lianbo Wang, Shilong Xing, Zizhen Shen, Huabing Liu, Chuanhai Jiang, Vincent Ji, Yuantao Zhao. The synergistic role of Ti microparticles and CeO2 nanoparticles in tailoring microstructures and properties of high-quality Ni matrix nanocomposite coating [J]. J. Mater. Sci. Technol., 2022, 105(0): 182-193. |
| [3] | Dongdong Zhang, Jielong Zhou, Feng Peng, Ji Tan, Xianming Zhang, Shi Qian, Yuqin Qiao, Yu Zhang, Xuanyong Liu. Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis [J]. J. Mater. Sci. Technol., 2022, 105(0): 57-67. |
| [4] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
| [5] | Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution [J]. J. Mater. Sci. Technol., 2022, 106(0): 19-27. |
| [6] | Qingfang Huang, Qingzheng Jiang, Jifan Hu, Sajjad Ur Rehman, Gang Fu, Qichen Quan, Jixiang Huang, Deqin Xu, Dakun Chen, Zhenchen Zhong. Extraordinary simultaneous enhancement of the coercivity and remanence of dual alloy HRE‐free Nd‐Fe‐B sintered magnets by post‐sinter annealing [J]. J. Mater. Sci. Technol., 2022, 106(0): 236-242. |
| [7] | Jingyi Ma, Xinyu Chen, Yaochen Sheng, Ling Tong, Xiaojiao Guo, Minxing Zhang, Chen Luo, Lingyi Zong, Yin Xia, Chuming Sheng, Yin Wang, Saifei Gou, Xinyu Wang, Xing Wu, Peng Zhou, David Wei Zhang, Chenjian Wu, Wenzhong Bao. Top gate engineering of field-effect transistors based on wafer-scale two-dimensional semiconductors [J]. J. Mater. Sci. Technol., 2022, 106(0): 243-248. |
| [8] | Min Feng, Chengyang Jiang, Minghui Chen, Shenglong Zhu, Fuhui Wang. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation [J]. J. Mater. Sci. Technol., 2022, 120(0): 139-149. |
| [9] | Sensen Chai, Shiyu Zhong, Qingshan Yang, Daliang Yu, Qingwei Dai, Hehe Zhang, Limeng Yin, Gang Wang, Zongxiang Yao. Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg-Al-Ca-Mn alloys [J]. J. Mater. Sci. Technol., 2022, 120(0): 108-117. |
| [10] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
| [11] | Bowen Zhang, Chuantong Chen, Takuya Sekiguchi, Yang Liu, Caifu Li, Suganuma Katsuaki. Development of anti-oxidation Ag salt paste for large-area (35 × 35 mm2) Cu-Cu bonding with ultra-high bonding strength [J]. J. Mater. Sci. Technol., 2022, 113(0): 261-270. |
| [12] | Sepideh Pourhashem, Abdolvahab Seif, Farhad Saba, Elham Garmroudi Nezhad, Xiaohong Ji, Ziyang Zhou, Xiaofan Zhai, Majid Mirzaee, Jizhou Duan, Alimorad Rashidi, Baorong Hou. Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies [J]. J. Mater. Sci. Technol., 2022, 118(0): 73-113. |
| [13] | C.L. Jia, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Static spheroidization and its effect on superplasticity of fine lamellae in nugget of a friction stir welded Ti-6Al-4V joint [J]. J. Mater. Sci. Technol., 2022, 119(0): 1-10. |
| [14] | Min-Kyu Song, Hojung Lee, Jeong Hyun Yoon, Young-Woong Song, Seok Daniel Namgung, Taehoon Sung, Yoon-Sik Lee, Jong-Seok Lee, Ki Tae Nam, Jang-Yeon Kwon. Humidity-induced synaptic plasticity of ZnO artificial synapses using peptide insulator for neuromorphic computing [J]. J. Mater. Sci. Technol., 2022, 119(0): 150-155. |
| [15] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
