J. Mater. Sci. Technol. ›› 2022, Vol. 120: 139-149.DOI: 10.1016/j.jmst.2022.03.001
• Research Article • Previous Articles Next Articles
Min Fenga, Chengyang Jianga, Minghui Chena,*(), Shenglong Zhub, Fuhui Wanga
Received:
2021-03-04
Revised:
2021-12-05
Accepted:
2022-03-01
Published:
2022-09-01
Online:
2022-03-12
Contact:
Minghui Chen
About author:
* E-mail address: mhchen@mail.neu.edu.cn (M. Chen).Min Feng, Chengyang Jiang, Minghui Chen, Shenglong Zhu, Fuhui Wang. A general strategy towards improving the strength and thermal shock resistance of glass-ceramics through microstructure regulation[J]. J. Mater. Sci. Technol., 2022, 120: 139-149.
SiO2 | Al2O3 | ZnO | CaO | ZrO2 | TiO2 | B2O3 | Na2O | KNO3 |
---|---|---|---|---|---|---|---|---|
58.26 | 5.98 | 9.00 | 3.66 | 5.29 | 2.75 | 4.66 | 3.40 | 7.00 |
Table 1. Nominal composition of the glass-ceramics (wt.%).
SiO2 | Al2O3 | ZnO | CaO | ZrO2 | TiO2 | B2O3 | Na2O | KNO3 |
---|---|---|---|---|---|---|---|---|
58.26 | 5.98 | 9.00 | 3.66 | 5.29 | 2.75 | 4.66 | 3.40 | 7.00 |
Fig. 1. (a) XRD patterns of glass-ceramics PE, E25A, E25C, and E10A15C after annealing at 900 °C for 5 min, 0.5, and 10 h; (b) SEM microstructures after annealing for 0.5 h; (c) SEM microstructures after annealing for 10 h.
Fig. 2. (a-c) XRD patterns of glass-ceramics with the addition of Al2O3 or/and CeO2 after annealing at 900 °C for 10 h; (d) variation of contents of Zn2SiO4 and CaTiSiO5 with Al2O3 addition; (e) variation of contents of ZrSiO4 with the addition of CeO2; (f) variation of contents of all needle-like crystals with the addition of Al2O3 or/and CeO2 (the red line represents Zn2SiO4 and CaTiSiO5, and the blue line represents ZrSiO4).
Fig. 3. (a) TEM microstructure and elemental maps of PE annealed at 900 °C for 0.5 h; (b) and (c) SAED patterns obtained at areas “1” and “2” in (a), respectively.
Zone | O | Si | Ca | Ti | Zr | Others |
---|---|---|---|---|---|---|
1 | 51.6 | 0.5 | 5.9 | 16.3 | 20.9 | 4.8 |
2 | 47.5 | 24.8 | 6.7 | 9.4 | 9.6 | 2.0 |
3 | 37.9 | 60.3 | 0.2 | - | 0.7 | 0.9 |
Table 2. EDS analysis at different zones in Fig. 3(a) (at.%).
Zone | O | Si | Ca | Ti | Zr | Others |
---|---|---|---|---|---|---|
1 | 51.6 | 0.5 | 5.9 | 16.3 | 20.9 | 4.8 |
2 | 47.5 | 24.8 | 6.7 | 9.4 | 9.6 | 2.0 |
3 | 37.9 | 60.3 | 0.2 | - | 0.7 | 0.9 |
Fig. 4. (a) TEM microstructure and elemental maps of E25A annealed at 900 °C for 0.5 h; (b) and (c) HRTEM images of the zones “1” and “2” in (a), respectively. Insets are Fast Fourier Transform (FFT) electron diffraction patterns.
Fig. 5. (a, b) TEM microstructures and elemental maps of E25C annealed at 900 °C for 0.5 h; (c, d) HRTEM images at the interface between zones “1” and “2” in (b). Insets are Fast Fourier Transform (FFT) electron diffraction patterns.
Zone | O | Si | Ca | Ti | Zr | Ce | Others |
---|---|---|---|---|---|---|---|
1 | 62.1 | 19.7 | 0.9 | 0.5 | 2.9 | 13.5 | 0.4 |
2 | 59.7 | 8.2 | 6.1 | 8.5 | 8.0 | 2.1 | 7.4 |
3 | 57.1 | 36.1 | 0.3 | - | 1.2 | - | 5.3 |
Table 3. EDS analysis at different zones in Fig. 5(b) (at.%).
Zone | O | Si | Ca | Ti | Zr | Ce | Others |
---|---|---|---|---|---|---|---|
1 | 62.1 | 19.7 | 0.9 | 0.5 | 2.9 | 13.5 | 0.4 |
2 | 59.7 | 8.2 | 6.1 | 8.5 | 8.0 | 2.1 | 7.4 |
3 | 57.1 | 36.1 | 0.3 | - | 1.2 | - | 5.3 |
Fig. 6. (a) Fracture strength of glass-ceramics E10A, E10A5C, E10A10C, and E10A15C as a function of annealing time; (b) fracture surface morphologies of glass-ceramics corresponding to Ⅰ, Ⅱ, Ⅲ, and Ⅳ in (a).
Fig. 7. (a) Mass change of glass-ceramic coatings PE, E25A, E25C, E10A15C, and E15A10C after thermal shock at 900 °C for different cycles (inset is the enlarged view); (b) macro morphologies of different glass-ceramic coatings after thermal shock for 0,10, and 50 cycles.
Fig. 8. Surface morphologies and cross-sectional microstructures of the glass-ceramic coatings: (a, e) PE; (b, f) E25A, (c, g) E25C, and (d, h) E10A15C after thermal shock at 900 °C for 50 cycles.
Materials | CTE (10-6/°C) | Young's moduli (GPa) | Poisson's ratios | Shear moduli (GPa) | Bulk moduli (GPa) |
---|---|---|---|---|---|
ZrSiO4 | 4.99 [ | 27 [ | 0.27 [ | 107 | 196 |
Zn2SiO4 | 2.80 [ | 12 [ | 0.30 [ | 50 | 108 |
Glass | 5.70 [ | 72 [ | 0.29 [ | 28 | 57 |
Table 4. Thermo-physical properties of ZrSiO4, Zn2SiO4, and glass.
Materials | CTE (10-6/°C) | Young's moduli (GPa) | Poisson's ratios | Shear moduli (GPa) | Bulk moduli (GPa) |
---|---|---|---|---|---|
ZrSiO4 | 4.99 [ | 27 [ | 0.27 [ | 107 | 196 |
Zn2SiO4 | 2.80 [ | 12 [ | 0.30 [ | 50 | 108 |
Glass | 5.70 [ | 72 [ | 0.29 [ | 28 | 57 |
[1] |
B. Yeom, T. Sain, N. Lacevic, D. Bukharina, S.H. Cha, A.M. Waas, E.M. Arruda, N.A. Kotov, Nature 543 (2017) 95-99.
DOI URL |
[2] |
V. Miguez-Pacheco, L.L. Hench, A.R. Boccaccini, Acta Biomater. 13 (2015) 1-15.
DOI URL PMID |
[3] |
Z.F. Cao, S.X. Dai, S.J. Ding, M. Wang, L.L. Xu, C.C. Liu, C.G. Lin, J. Eur. Ceram. Soc. 41 (2021) 7215-7221.
DOI URL |
[4] |
S.M. Wang, F.H. Kuang, D.Z. Zhang, X. Zhou, M.H. Tang, J. Mater. Sci. Technol. 31 (2015) 1158-1160.
DOI URL |
[5] | S.M. Wang, F.H. Kuang, Q. Ye, Y.X. Wang, M.H. Tang, C.C. Ge, J. Mater. Sci. Tech- nol. 32 (2016) 583-586. |
[6] |
V. Soares, F. Serbena, I. Mathias, M. Crovace, E. Zanotto, Ceram. Int. 47 (2021) 2793-2801.
DOI URL |
[7] | A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nat. Commun. 3 (2012) 5-11. |
[8] |
T.M. Arruda, A. Kumar, S.V. Kalinin, S. Jesse, Nano Lett. 11 (2011) 4161-4167.
DOI URL |
[9] |
L. Katzenmeier, L. Carstensen, S. Schaper, P. Mueller-Buschbaum, A. Ban- darenka, Adv. Mater. 33 (2021) 2100585.
DOI URL |
[10] |
I.W. Donald, P.M. Mallinson, B.L. Metcalfe, L.A. Gerrard, J.A. Fernie, J. Mater. Sci. 46 (2011) 1975-2000.
DOI URL |
[11] |
Q.G. Fu, F.L. Zhao, H.J. Li, H. Peng, X.Y. Nan, J. Mater. Sci. Technol. 31 (2015) 467-472.
DOI URL |
[12] |
C.M. Yao, M. Ahmed, L. De Grave, K. Yoshihara, B. Mercelis, Y. Okazaki, K. Van Landuyt, Dent. Mater. 37 (2021) 894-904.
DOI URL |
[13] |
S. Celik, Ceram. Int. 41 (2015) 2744-2751.
DOI URL |
[14] |
A. Goel, D.U. Tulyaganov, V.V. Kharton, A.A Yaremchenko, J.M.F. Ferreira, Acta Mater. 56 (2008) 3065-3076.
DOI URL |
[15] |
B. Bremm, S. Dolling, W. Becker, L. Blum, R. Peters, J. Malzbender, D. Stolten, J. Power Sources. 507 (2021) 230301.
DOI URL |
[16] |
M.H. Chen, W.B. Li, M.L. Shen, S.L. Zhu, F.H. Wang, Corros. Sci. 74 (2013) 178-186.
DOI URL |
[17] |
M.H. Chen, M.L. Shen, X. Wang, S.L. Zhu, F.H. Wang, J. Mater. Sci. Technol. 28 (2012) 433-438.
DOI URL |
[18] |
S. Sarkar, S. Datta, S. Das, D. Basu, Surf. Coat. Technol. 203 (2009) 1797-1805.
DOI URL |
[19] |
Y.M. Liao, B. Zhang, M.H. Chen, M. Feng, J.L. Wang, S.L. Zhu, F.H. Wang, Corros. Sci. 167 (2020) 108526.
DOI URL |
[20] |
G.G. Santos, F.C. Serbena, V.M. Fokin, E.D. Zanotto, Acta Mater. 130 (2017) 347-360.
DOI URL |
[21] |
R.G. Fernandes, R.M.C.V. Reis, R.R. Tobar, E.D. Zanotto, E.B. Ferreira, Acta Mater. 175 (2019) 130-139.
DOI URL |
[22] |
C.C. Chou, K.C. Feng, I.P. Raevski, H. Chen, C.Y. Tsao, P.Y. Chen, C.S. Chen, C.A. Lu, C.S. Tu, Mater. Res. Bull. 96 (2017) 66-70.
DOI URL |
[23] |
S.A.M. Abdel-Hameed, N.A. Ghoniem, E.A. Saad, F.H. Margha, Ceram. Int. 31 (2005) 499-505.
DOI URL |
[24] |
K.B. Weng, N.B. Long, Y.Q. Guo, Q. Jiao, S.X. Dai, C.G. Lin, J. Eur. Ceram. Soc. 40 (2020) 4148-4152.
DOI URL |
[25] |
M. Garai, N. Sasmal, A.R. Molla, A. Tarafder, B. Karmakar, J. Mater. Sci. Technol. 31 (2015) 110-119.
DOI URL |
[26] |
H. Fatemeh, M. Amir, H. Zohreh, F. Sajad, J. Mater. Sci. Technol. 29 (2013) 49-54.
DOI URL |
[27] |
C.Y. Wang, H.C. Jia, A.P. Wang, X. Wang, Y.L. Guo, J.Y. Zhang, Ceram. Int. 45 (2019) 5133-5138.
DOI URL |
[28] |
L. Vladislavova, C. Thieme, C. Ruessel, J. Mater. Sci. 52 (2017) 4052-4060.
DOI URL |
[29] |
X. Wang, M.H. Chen, S.L. Zhu, F.H. Wang, J. Am. Ceram. Soc. 96 (2013) 1456-1463.
DOI URL |
[30] |
K. Chen, M.H. Chen, Z.D. Yu, S.L. Zhu, F.H. Wang, Int. J. Appl. Ceram. Technol. 16 (2019) 185-194.
DOI URL |
[31] |
S.M. Salman, H. Darwish, E.A. Mahdy, Ceram. Int. 34 (2008) 1819-1828.
DOI URL |
[32] | S. Rossi, M. Calovi, D. Velez, I. Rodriguez, M.D. Rincon, J.M. Munoz, H.J. Grande, Adv. Eng. Mater. 21 (2019) 1-10. |
[33] |
J. Fang, L.B. Sun, S.S. Guo, C.F. Liu, J. Zhang, J. Eur. Ceram. Soc. 41 (2021) 1817-1827.
DOI URL |
[34] |
M.H. Chen, S.L. Zhu, F.H. Wang, J. Am. Ceram. Soc. 93 (2010) 3230-3235.
DOI URL |
[35] |
R. Terki, G. Bertrand, H. Aourag, Microelectron. Eng. 81 (2005) 514-523.
DOI URL |
[36] | V. Panchal, N. Garg, S.N. Achary, A.K. Tyagi, S.M. Sharma, J. Phys.Condens. Mat- ter 18 (2006) 8241-8250. |
[37] |
T. Beirau, W.D. Nix, H. Poellmann, R.C. Ewing, Phys. Chem. Miner. 45 (2018) 435-442.
DOI URL |
[38] |
M. Kerstan, M. Wueller, C. Ruessel, Mater. Res. Bull. 46 (2011) 2456-2463.
DOI URL |
[39] |
I.C.J. Dechandt, P. Soares, M.J. Pascual, F.C. Serbena, J. Eur. Ceram. Soc. 40 (2020) 6002-6013.
DOI URL |
[40] |
M.B. Ostergaard, S.R. Hansen, K. Januchta, T. To, S.J. Rzoska, M. Bockowski, M. Bauchy, M.M. Smedskjaer, Materials 12 (2019) 2439-2457.
DOI URL |
[41] |
M.H. Chen, S.L. Zhu, M.L. Shen, F.H. Wang, Y. Niu, Mater. Sci. Eng. A 528 (2011) 1360-1366.
DOI URL |
[42] |
R.I. Todd, A.R. Boccaccini, R. Sinclair, R.B. Yallee, R.J. Young, Acta Mater. 47 (1999) 3233-3240.
DOI URL |
[43] | I. Barin, in: Thermochemical Data of Pure Substance, 3rd ed., Wiley-VCH, Ger- many, 1995, pp. 279-281. |
[44] |
L. Hallmann, P. Ulmer, M.D. Gerngross, J. Jetter, M. Mintrone, F. Lehmann, M. Kern, Dent. Mater. 35 (2019) 713-729.
DOI URL PMID |
[45] | M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, C.S. Hwang, Appl. Phys. Lett. 102 (2013) 1481-1483. |
[46] |
J. Muller, T.S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, Nano Lett. 12 (2012) 4318-4323.
DOI URL |
[47] |
L. Li, O. Van Der Biest, P.L. Wang, J. Vleugels, W.W. Chen, S.G. Huang, J. Eur. Ceram. Soc. 21 (2001) 2903-2910.
DOI URL |
[48] |
H.Z. Zhu, F. Wang, Q.L. Liao, Y.L. Wang, Y.C. Zhu, Mater. Chem. Phys. 249 (2020) 122936.
DOI URL |
[1] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[2] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[3] | Xuelian Wu, Si Lan, Xiyang Li, Ming Yang, Zhenduo Wu, Xiaoya Wei, Haiyan He, Muhammad Naeem, Jie Zhou, Zhaoping Lu, Elliot Paul Gilbert, Dong Ma, Xun-Li Wang. Continuous chemical redistribution following amorphous-to-crystalline structural ordering in a Zr-Cu-Al bulk metallic glass [J]. J. Mater. Sci. Technol., 2022, 101(0): 285-293. |
[4] | Aina He, Jiawei Li, Mingkun Wang, Anding Wang, Yao Xiao, Yaqiang Dong, Hai Guo, Rongrong Jiang, Weixing Xia, Lihong Dong, Haidou Wang, Jianya Ge. Microstructure, magnetic domain and dynamic loss of surface-textured Fe-based nanocrystalline alloy [J]. J. Mater. Sci. Technol., 2022, 120(0): 1-7. |
[5] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[6] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
[7] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[8] | Z.Q. Chen, M.C. Li, X. Tong, Y. Zhao, J.Y. Xie, S.W. Guo, P. Huang, F. Wang, H.B. Ke, B.A. Sun, W.H. Wang. Hardening and toughening effects of intermediate nanosized structures in a confined amorphous alloy film [J]. J. Mater. Sci. Technol., 2022, 118(0): 44-53. |
[9] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
[10] | C. Yang, M.Q. Li, Y.G. Liu. Characterization of face-centered cubic structure and deformation mechanisms in high energy shot peening process of TC17 [J]. J. Mater. Sci. Technol., 2022, 110(0): 136-151. |
[11] | Guanqiang Wang, Mingsong Chen, Yongcheng Lin, Hongbin Li, Yuqiang Jiang, Yanyong Ma, Chengxu Peng, Jinliang Cai, Quan Chen. Recrystallization nucleation under close-set δ phase in a nickel-based superalloy during annealing [J]. J. Mater. Sci. Technol., 2022, 115(0): 166-176. |
[12] | L.H. Liu, W.J. Gao, X.S. Huang, T. Zhang, Z.Y. Liu, C. Yang, W.W. Zhang, W.R. Li, L. Li, P.J. Li. Shear-accelerated crystallization of glass-forming metallic liquids in high-pressure die casting [J]. J. Mater. Sci. Technol., 2022, 117(0): 146-157. |
[13] | Abdul Malik, Yangwei Wang, Huanwu Cheng, Faisal Nazeer, Muhammad Abubaker Khan. Microstructure evolution of Mg-Zn-Zr magnesium alloy against soft steel core projectile [J]. J. Mater. Sci. Technol., 2021, 79(0): 46-61. |
[14] | Yanying Hu, Huijie Liu, Dongrui Li. Contribution of ultrasonic to microstructure and mechanical properties of tilt probe penetrating friction stir welded joint [J]. J. Mater. Sci. Technol., 2021, 85(0): 205-217. |
[15] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||