J. Mater. Sci. Technol. ›› 2022, Vol. 120: 53-64.DOI: 10.1016/j.jmst.2021.12.043
• Research Article • Previous Articles Next Articles
Keer Lia, W. Chena,*(
), G.X. Yua, J.Y. Zhanga,*(
), S.W. Xinb, J.X. Liuc, X.X. Wangc, J. Suna
Received:2021-09-20
Revised:2021-11-18
Accepted:2021-12-01
Published:2022-09-01
Online:2022-03-09
Contact:
W. Chen,J.Y. Zhang
About author:jinyuzhang1002@mail.xjtu.edu.cn (J.Y. Zhang).Keer Li, W. Chen, G.X. Yu, J.Y. Zhang, S.W. Xin, J.X. Liu, X.X. Wang, J. Sun. Deformation kinking and highly localized nanocrystallization in metastable β-Ti alloys using cold forging[J]. J. Mater. Sci. Technol., 2022, 120: 53-64.
Fig. 3. Optical micrographs of Ti-11V samples cold forged to different strains: (a) the ST state. The inset shows the as-received hot-rolled morphology for comparison; (b) 0.05; (c) 0.1; (d) 0.4; (e) 0.7 and (f) 1.2. Kink bands and slip bands were marked by red arrows and blue arrows, respectively.
Fig. 4. EBSD characterization of Ti-11 V sample forged at a strain of 0.1: (a) grayscale image quality map; (b) misorientation profiles respectively along the ‘b1b1’ line crossing slip bands, and along the ‘b2b2’, ‘b3b3’, ‘b4b4’ lines crossing kink bands in (a); (c) corresponding IPF map of (a) showing several isolated pre-kinks. The inset is the legend; (d) IPF map showing the growth and coalescence of pre-kinks. The inset is corresponding grayscale image quality map; (e) IPF map showing the as-formed whole kink bands.
Fig. 5. EBSD characterization of Ti-11 V sample forged at a strain of 0.4: (a) grayscale image quality map showing the coalescence of kink bands; (b) corresponding IPF map of (a). Black color represents unindexed areas; (c) misorientation profile along the ‘1234’ line crossing the kink bands in (a); (d) the other IPF map showing the widened kink bands; (e) corresponding KAM map of (d); (f) misorientation profile along the ‘ff'’ line crossing the kink band in (d).
Fig. 6. EBSD characterization of Ti-11 V sample forged at a strain of 0.7: (a) grayscale image quality map showing the fragmentation of kink bands; (b) corresponding KAM map and (c) IPF map, respectively; (d) pole figure of (c) along the {110} pole.
Fig. 7. TEM images of Ti-V samples forged at a strain of 0.4: (a) kink bands showing the inner dense dislocation tangling; (b) kink bands showing the inner dislocation walls; (c) kink bands containing the bend boundaries; (a'), (b') and (c') corresponding SAED patterns of the circled areas in (a), (b) and (c) under zone axes of [$\bar{1}$11], respectively; (d) and (d') kink bands showing obvious distortion and fragmentation of the boundaries.
Fig. 8. TEM micrographs of Ti-V samples forged at a strain of 0.7: (a) kink band divided by dislocation cells along the longitudinal direction; (b) SAED patterns of the circle areas of ‘b1’, ‘b2’ and ‘b3’ in (a), respectively; (c) DF-image of the kink band corresponding to (a).
Fig. 9. TEM micrographs of Ti-V samples forged at a strain of 1.2: (a) overall BF-image showing the nanocrystallization within the kink band; (b) the magnification of the rectangular in (a); (c) SAED pattern of (b). The diffraction rings were indexed; (d) DF-image of (b); (e) and (f) SAED patterns taken from the surrounding β-matrix, and the boundaries of kink band/β-matrix, respectively.
Fig. 10. Nanoindentation inside both kink bands and the outer neighboring β-matrix at various strains: load-displacement curves at the strain of (a) 0.1, (b) 0.4, (c) 0.7 and (d) 1.2. The inset in (a) is typical AFM morphology of the indent; (b) variations of the average hardness (HN) as a function of the strain.
Fig. 11. Schematical showing the formation processes of kink bands. The crystal direction is indexed, and dislocations are marked as ‘⊥’. Gray arrows point in the direction of increasing strain.
Fig. 12. Schematical illustration of the proposed microstructural refinement mechanism within kink bands. Gray arrows point in the direction of increasing strain.
Fig. 13. Variations of dislocation density as a function of the applied strain: (a) the calculated total dislocation density ρtot on basis of nanoindentation testing in Fig. 10; (b) the measured ρGND according to EBSD maps.
| [1] |
E. Orowan, Nature 149 (1942) 643-644.
DOI URL |
| [2] |
M. Yamasaki, K. Hagihara, S.-i. Inoue, J.P. Hadorn, Y. Kawamura, Acta Mater. 61 (2013) 2065-2076.
DOI URL |
| [3] |
H.J. Rathod, T. Ouisse, M. Radovic, A. Srivastava, Sci. Adv. 7 (2021) eabg2549.
DOI URL |
| [4] |
Y. Zheng, W. Zeng, Y. Wang, S. Zhang, Mater. Sci. Eng. A 702 (2017) 218-224.
DOI URL |
| [5] |
J.B. Hess, C.S. Barrett, JOM 1 (1949) 599-606.
DOI URL |
| [6] |
K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano, Y. Kawamura, Int. J. Plast. 77 (2016) 174-191.
DOI URL |
| [7] |
Y. Zheng, W. Zeng, Y. Wang, D. Zhou, X. Gao, J. Alloy. Compd. 708 (2017) 84-92.
DOI URL |
| [8] |
D. Qin, Y. Li, Mater. Charact. 147 (2019) 421-433.
DOI URL |
| [9] |
S. Wang, M. Wu, D. Shu, B. Sun, Mater. Lett. 264 (2020) 127369.
DOI URL |
| [10] |
P. Maurel, L. Weiss, P. Bocher, T. Grosdidier, Mater. Sci. Eng. A 803 (2021) 140618.
DOI URL |
| [11] |
X. Zheng, S. Zheng, J. Wang, Y. Ma, H. Wang, Y. Zhou, X. Shao, B. Zhang, J. Lei, R. Yang, X. Ma, Acta Mater. 181 (2019) 479-490.
DOI URL |
| [12] |
Y. Yang, S.Q. Wu, G.P. Li, Y.L. Li, Y.F. Lu, K. Yang, P. Ge, Acta Mater. 58 (2010) 2778-2787.
DOI URL |
| [13] |
J. Zhang, B. Qian, Y. Wu, Y. Wang, J. Cheng, Z. Chen, J. Li, F. Sun, F. Prima, J. Mater. Sci. Technol. 74 (2021) 21-26.
DOI URL |
| [14] |
K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, T. Nakano, Acta Mater. 163 (2019) 226-239.
DOI URL |
| [15] |
K. Hagihara, M. Yamasaki, Y. Kawamura, T. Nakano, Mater. Sci. Eng. A 763 (2019) 138163.
DOI URL |
| [16] |
K. Hagihara, R. Ueyama, M. Yamasaki, Y. Kawamura, T. Nakano, Acta Mater. 209 (2021) 116797.
DOI URL |
| [17] |
S. Jin, K. Marthinsen, Y. Li, Acta Mater. 120 (2016) 403-414.
DOI URL |
| [18] |
M. Zhang, B. Luan, L. Chu, B. Gao, L. Wang, G. Yuan, Q. Liu, Scr. Mater. 187 (2020) 379-383.
DOI URL |
| [19] |
Y. Muto, T. Shiraiwa, M. Enoki, Mater. Sci. Eng. A 689 (2017) 157-165.
DOI URL |
| [20] |
S. Yamasaki, T. Tokuzumi, W. Li, M. Mitsuhara, K. Hagihara, T. Fujii, H. Nakashima, Acta Mater. 195 (2020) 25-34.
DOI URL |
| [21] |
T. Tokuzumi, S. Yamasaki, W. Li, M. Mitsuhara, H. Nakashima, Materialia 12 (2020) 100716.
DOI URL |
| [22] |
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2020) 103-189.
DOI URL |
| [23] |
A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, CIRP Ann. Manuf. Technol. 57 (2008) 716-735.
DOI URL |
| [24] |
R. Valiev, Nat. Mater. 3 (2004) 511-516.
DOI URL |
| [25] |
N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, Acta Mater. 50 (2002) 4603-4616.
DOI URL |
| [26] |
X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu, Acta Mater. 50 (2002) 2075-2084.
DOI URL |
| [27] |
L. Zhou, G. Liu, X.L. Ma, K. Lu, Acta Mater. 56 (2008) 78-87.
DOI URL |
| [28] |
K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu, Acta Mater. 52 (2004) 4101-4110.
DOI URL |
| [29] |
Y.S. Li, N.R. Tao, K. Lu, Acta Mater. 56 (2008) 230-241.
DOI URL |
| [30] |
D. Shin, I. Kim, J. Kim, Y. Kim, S. Semiatin, Acta Mater. 51 (2003) 983-996.
DOI URL |
| [31] |
X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu, Acta Mater. 53 (2005) 681-691.
DOI URL |
| [32] |
W. Chen, Q. Sun, L. Xiao, J. Sun, Metall. Mater. Trans. A 43 (2012) 316-326.
DOI URL |
| [33] |
Y.B. Wang, Y.H. Zhao, Q. Lian, X.Z. Liao, R.Z. Valiev, S.P. Ringer, Y.T. Zhu, E.J. Lav- ernia, Scr. Mater. 63 (2010) 613-616.
DOI URL |
| [34] |
N. Tsuji, T. Maki, Scr. Mater. 60 (2009) 1044-1049.
DOI URL |
| [35] |
K. Lu, N. Hansen, Scr. Mater. 60 (2009) 1033-1038.
DOI URL |
| [36] |
N.R. Tao, K. Lu, Scr. Mater. 60 (2009) 1039-1043.
DOI URL |
| [37] |
H.G. Paris, B.G. Lefevre, E.A. Starke, Metall. Trans. A 7 (1976) 273-278.
DOI URL |
| [38] |
D. Choudhuri, Y. Zheng, T. Alam, R. Shi, M. Hendrickson, S. Banerjee, Y. Wang, S.G. Srinivasan, H. Fraser, R. Banerjee, Acta Mater. 130 (2017) 215-228.
DOI URL |
| [39] |
F.W. Ling, E. Starke, B. Lefevre, Metall. Trans. 5 (1974) 179.
DOI URL |
| [40] |
K. Li, W. Chen, G. Yu, J. Zhang, J. Sun, J. Alloy. Compd. 875 (2021) 159982.
DOI URL |
| [41] |
W. Chen, Q. Sun, L. Xiao, J. Sun, Mater. Sci. Eng. A 527 (2010) 7225-7234.
DOI URL |
| [42] |
M. Masanta, S.M. Shariff, A.R. Choudhury, Mater. Sci. Eng. A 528 (2011) 5327-5335.
DOI URL |
| [43] |
V. Gerold, H.P. Karnthaler, Acta Metall. 37 (1989) 2177-2183.
DOI URL |
| [44] |
L. Xiao, D.L. Chen, M.C. Chaturvedi, Scr. Mater. 52 (2005) 603-607.
DOI URL |
| [45] |
D.K. Yang, P. Cizek, P.D. Hodgson, C.E. Wen, Acta Mater. 58 (2010) 4536-4548.
DOI URL |
| [46] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI URL |
| [47] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
| [48] |
T. Xie, H. Shi, H. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
| [49] |
W. Chen, L. Xiao, Q. Sun, J. Sun, Mater. Sci. Eng. A 554 (2012) 86-94.
DOI URL |
| [50] | D. Hull, D.J. Bacon, Introduction to Dislocations, 5th ed., Elsevier, Oxford, 2011. |
| [51] |
M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater. 111 (2016) 173-186.
DOI URL |
| [52] |
D.A. Hughes, N. Hansen, Philos. Mag. 83 (2003) 3871-3893.
DOI URL |
| [53] |
N. Hansen, R. Mehl, A. Medalist, Metall. Mater. Trans. A 32 (2001) 2917-2935.
DOI URL |
| [54] |
S. Sadeghpour, S.M. Abbasi, M. Morakabati, L.P. Karjalainen, J. Alloy. Compd. 808 (2019) 151741.
DOI URL |
| [55] | M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Proc. Natl. Acad. Sci. 115 (2018) 7224-7229. |
| [56] |
X. Wu, Y. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
| [57] |
Y. Zhu, K. Ameyama, P.M. Anderson, I.J. Beyerlein, H. Gao, H.S. Kim, E. Lavernia, S. Mathaudhu, H. Mughrabi, R.O. Ritchie, Mater. Res. Lett. 9 (2021) 1-31.
DOI URL |
| [58] | Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362 (2018) 559. |
| [59] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, Nat. Mater. 17 (2018) 63-71.
DOI URL |
| [60] |
A. Devaraj, V.V. Joshi, A. Srivastava, S. Manandhar, V. Moxson, V.A. Duz, C. Lavender, Nat. Commun. 7 (2016) 11176.
DOI URL PMID |
| [61] |
E. Ma, X. Wu, Nat. Commun. 10 (2019) 5623.
DOI URL |
| [62] | A.C. Fischer-Cripps, in: Nanoindentation, Springer, 2011, p. 26. |
| [63] |
Y. Yang, T. Yan, C. Zhang, X. Fu, T. Ma, M. Niu, Z. Ding, J. Gou, Y. Chen, Y. Song, J. Nucl. Mater. 540 (2020) 152381.
DOI URL |
| [64] |
M. Song, Mater. Sci. Eng. A 443 (2007) 172-177.
DOI URL |
| [65] |
G.H. Zhao, X. Xu, D. Dye, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 183 (2020) 155-164.
DOI URL |
| [66] |
G.H. Zhao, X.Z. Liang, B. Kim, P.E.J. Rivera-Díaz-del-Castillo, Mater. Sci. Eng. A 756 (2019) 156-160.
DOI URL |
| [67] |
L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.S. Park, J. Lind, R.M. Suter, T.R. Bieler, Acta Mater. 132 (2017) 598-610.
DOI URL |
| [68] | M.F. Ashby, Philos. Mag. 21 (1970) 399-424. |
| [69] |
T. Ozaki, H. Matsumoto, S. Watanabe, S. Hanada, Mater. Trans. 45 (2004) 2776-2779.
DOI URL |
| [70] | T.H. Courtney, Mechanical Behavior of Materials, 2nd. ed., McGraw Hill, Boston, 2000. |
| [71] |
A. Arsenlis, D.M. Parks, Acta Mater. 47 (1999) 1597-1611.
DOI URL |
| [1] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
| [2] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
| [3] | Cheng Zhu, Zhihao Zhao, Qingfeng Zhu, Gaosong Wang, Yubo Zuo, Qiangqiang Li, Gaowu Qin. Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 114-122. |
| [4] | Miao Wang, Xingwei Huang, Peng Xue, Shangquan Wu, Chuanyong Cui, Qingchuan Zhang. High strength and ductility achieved in friction stir processed Ni-Co based superalloy with fine grains and nanotwins [J]. J. Mater. Sci. Technol., 2022, 106(0): 162-172. |
| [5] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
| [6] | Y.K. Xiao, H. Chen, Z.Y. Bian, T.T. Sun, H. Ding, Q. Yang, Y. Wu, Q. Lian, Z. Chen, H.W. Wang. Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles [J]. J. Mater. Sci. Technol., 2022, 109(0): 254-266. |
| [7] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
| [8] | Xiangzhen Zhu, Shihao Wang, Xixi Dong, Xiangfa Liu, Shouxun Ji. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2022, 100(0): 36-45. |
| [9] | J.M. Yu, T. Hashimoto, H.T. Li, N. Wanderka, Z. Zhang, C. Cai, X.L. Zhong, J. Qin, Q.P. Dong, H. Nagaumi, X.N. Wang. Formation of intermetallic phases in unrefined and refined AA6082 Al alloys investigated by using SEM-based ultramicrotomy tomography [J]. J. Mater. Sci. Technol., 2022, 120(0): 118-128. |
| [10] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
| [11] | Weichao Bao, Xin-Gang Wang, Ying Lu, Ji-Xuan Liu, Shikuan Sun, Guo-Jun Zhang, Fangfang Xu. Effect of native carbon vacancies on evolution of defects in ZrC1-x under He ion irradiation and annealing [J]. J. Mater. Sci. Technol., 2022, 119(0): 87-97. |
| [12] | Sam Yaw Anaman, Solomon Ansah, Hoon-Hwe Cho, Min-Gu Jo, Jin-Yoo Suh, Minjung Kang, Jong-Sook Lee, Sung-Tae Hong, Heung Nam Han. An investigation of the microstructural effects on the mechanical and electrochemical properties of a friction stir processed equiatomic CrMnFeCoNi high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 60-73. |
| [13] | Z.Y. Zhao, R.G. Guan, Y.F. Shen, P.K. Bai. Grain refinement mechanism of Mg-3Sn-1Mn-1La alloy during accumulative hot rolling [J]. J. Mater. Sci. Technol., 2021, 91(0): 251-261. |
| [14] | Shenbao Jin, Zhenjiao Luo, Xianghai An, Xiaozhou Liao, Jiehua Li, Gang Sha. Composition-dependent dynamic precipitation and grain refinement in Al-Si system under high-pressure torsion [J]. J. Mater. Sci. Technol., 2021, 68(0): 199-208. |
| [15] | Shan Cecilia Cao, Xiaochun Zhang, Yuan Yuan, Pengyau Wang, Lei Zhang, Na Liu, Yi Liu, Jian Lu. A constitutive model incorporating grain refinement strengthening on metallic alloys [J]. J. Mater. Sci. Technol., 2021, 88(0): 233-239. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
