J. Mater. Sci. Technol. ›› 2022, Vol. 119: 150-155.DOI: 10.1016/j.jmst.2021.12.016
• Research Article • Previous Articles Next Articles
Min-Kyu Songa, Hojung Leea, Jeong Hyun Yoona, Young-Woong Songa, Seok Daniel Namgungb,c, Taehoon Sunga, Yoon-Sik Leed, Jong-Seok Leea, Ki Tae Namb,c, Jang-Yeon Kwona,*()
Received:
2021-08-02
Revised:
2021-11-30
Accepted:
2021-12-12
Published:
2022-08-20
Online:
2022-02-21
Contact:
Jang-Yeon Kwon
About author:
* School of Integrated Technology, Yonsei University, 85 Songdogwahak-ro Yeonsu-gu, Incheon 21983, South Korea E-mail address: jangyeon@yonsei.ac.kr (J.-Y. Kwon).Min-Kyu Song, Hojung Lee, Jeong Hyun Yoon, Young-Woong Song, Seok Daniel Namgung, Taehoon Sung, Yoon-Sik Lee, Jong-Seok Lee, Ki Tae Nam, Jang-Yeon Kwon. Humidity-induced synaptic plasticity of ZnO artificial synapses using peptide insulator for neuromorphic computing[J]. J. Mater. Sci. Technol., 2022, 119: 150-155.
Fig. 1. (a) Schematic diagram of biological synapse between two neurons. (b) The corresponding schematic image of the ZnO/Y7C synaptic device. Pink and navy-blue arrows indicate presynaptic spikes and the corresponding EPSCs, respectively.
Fig. 2. Electrical characteristics of ZnO/Y7C synaptic device. Transfer characteristics of (a) ZnO/Y7C transistor and (b) ZnO/SiO2 transistor in different humidity conditions. (c) ON current and voltage hysteresis as functions of relative humidity for different insulators. Variation in the transfer curve as the external environment changes (d) from ambient to vacuum and (e) from vacuum to ambient. (f) Variation in voltage hysteresis as the external environment changes. Red and orange dots correspond to (d) and (e), respectively.
Fig. 3. Synaptic behaviors of the ZnO/Y7C synaptic device. (a) Comparison of EPSC responses in various humidity conditions. A pulse with an amplitude of 1 V and a width of 100 ms was applied as a presynaptic spike. (b) EPSC responses as a function of the pulse width of a presynaptic pulse. (c) Paired-pulse facilitation at 50% RH (top) and 0% RH (bottom). Two pulses with an amplitude of 1 V, a width of 100 ms, and an interval of 100 ms were applied. (d) PPF index as a function of the time interval between two pulses. PPF index was calculated by A2/A1, where A1 and A2 indicate the first and second peak, respectively. (e) The memory process of the human brain proposed by Atkinson and Shiffrin [37]. (f) Data retention following application of various stimuli. Inset shows the relaxation time constant calculated by fitting the decaying curves. The transition from STP to LTP was observed. (g) Potentiation and depression of the channel conductance induced by 30 positive pulses (red) and 30 negative pulses (blue), respectively.
Fig. 4. Image classification simulation using an artificial neural network. (a) Schematic illustration of the three-layered multilayer perceptron (MLP) model (784 × 300 × 10). The handwritten images from MNIST datasets (left) were used for training and evaluation. Each synaptic weight follows the updating rule of the ZnO/Y7C synaptic device. (b) Simulated image-classification accuracy of the artificial neural network based on the ZnO/Y7C synaptic device.
[1] |
S. Yu, Proc, IEEE 106 (2018) 260-285.
DOI URL |
[2] |
S. Furber, J. Neural Eng. 13 (2016) 051001.
DOI URL |
[3] | J. Woo, J.H. Kim, J.P. Im, S.E. Moon, Adv. Intell. Syst. 2 (2020) 2000111. |
[4] |
Y. Li, Z. Wang, R. Midya, Q. Xia, J.J. Yang, J. Phys. D-Appl. Phys. 51 (2018) 503002.
DOI URL |
[5] |
S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.-S.P. Wong, IEEE Trans. Electron Devices 58 (2011) 2729-2737.
DOI URL |
[6] |
N.K. Upadhyay, H. Jiang, Z. Wang, S. Asapu, Q. Xia, J.Joshua Yang, Adv. Mater. Technol. 4 (2019) 1800589.
DOI URL |
[7] |
Y. van De Burgt, A. Melianas, S.T. Keene, G. Malliaras, A. Salleo, Nat. Electron. 1 (2018) 386-397.
DOI URL |
[8] |
K. Roy, A. Jaiswal, P. Panda, Nature 575 (2019) 607-617.
DOI URL |
[9] |
P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, Science 345 (2014) 668-673.
DOI PMID |
[10] | Y. He, L. Zhu, Y. Zhu, C. Chen, S. Jiang, R. Liu, Y. Shi, Q. Wan, Adv. Intell. Syst. 3 (2021) 2000210. |
[11] |
J.-S.Lee M.-K.Kim, Nano Lett 19 (2019) 2044-2050.
DOI URL |
[12] |
K.M. Song, J.-S. Jeong, B. Pan, X. Zhang, J. Xia, S. Cha, T.-E. Park, K. Kim, S. Finizio, J. Raabe, Nat. Electron. 3 (2020) 148-155.
DOI URL |
[13] |
E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C.D. James, M.J. Marinella, J.J. Yang, Science 364 (2019) 570-574.
DOI URL |
[14] |
V. Joshi, M.Le Gallo, S. Haefeli, I. Boybat, S.R. Nandakumar, C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, E. Eleftheriou, Nat. Commun. 11 (2020) 1-13.
DOI URL |
[15] |
P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J.J. Yang, H. Qian, Nature 577 (2020) 641-646.
DOI URL |
[16] | Y. Jeong, H. Lee, D.G. Ryu, S.H. Cho, G. Lee, S. Kim, S. Kim, Y.S. Lee, Adv. Elec- tron. Mater. 7 (2021) 2100185. |
[17] |
Y.-W. Song, M.-K. Song, D. Choi, J.-Y. Kwon, J. Alloy. Compd. 885 (2021) 161016.
DOI URL |
[18] |
J.-H. Ryu, B. Kim, F. Hussain, C. Mahata, M. Ismail, Y. Kim, S. Kim, Appl. Surf. Sci. 544 (2021) 148796.
DOI URL |
[19] | L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Nat. Commun. 5 (2014) 1-7. |
[20] |
Y. He, Y. Yang, S. Nie, R. Liu, Q. Wan, J. Mater. Chem. C 6 (2018) 5336-5352.
DOI URL |
[21] |
S. Kim, J. Yoon, H.-D. Kim, S.-J. Choi, ACS Appl. Mater. Interfaces 7 (2015) 25479-25486.
DOI URL |
[22] |
H. Kim, S. Hwang, J. Park, B.-G. Park, Nanotechnology 28 (2017) 405202.
DOI URL |
[23] |
L.Q. Guo, J. Wen, L.Q. Zhu, Y.M. Fu, H. Xiao, IEEE Electron Device Lett 38 (2017) 1248-1251.
DOI URL |
[24] |
C. He, J. Tang, D.-S. Shang, J. Tang, Y. Xi, S. Wang, N. Li, Q. Zhang, J.-K. Lu, Z. Wei, ACS Appl. Mater. Interfaces 12 (2020) 11945-11954.
DOI URL |
[25] | G.S. Lee, J.-S. Jeong, M.K. Yang, J.D. Song, Y.T. Lee, H. Ju, Appl. Surf. Sci. 541 (2021) 148483. |
[26] | K. Tao, P. Makam, R. Aizen, E. Gazit, Science 358 (2017) eaam9756. |
[27] |
M.-K. Song, S.D. Namgung, D. Choi, H. Kim, H. Seo, M. Ju, Y.H. Lee, T. Sung, Y.-S. Lee, K.T. Nam, Nat. Commun. 11 (2020) 1-8.
DOI URL |
[28] |
M.-K. Song, S.D. Namgung, T. Sung, A.-J. Cho, J. Lee, M. Ju, K.T. Nam, Y.-S. Lee, J.-Y. Kwon, ACS Appl. Mater. Interfaces 10 (2018) 42630-42636.
DOI URL |
[29] |
J. Lee, I.R. Choe, Y.O. Kim, S.D. Namgung, K. Jin, H.Y. Ahn, T. Sung, J.Y. Kwon, Y.S. Lee, K.T. Nam, Adv. Funct. Mater. 27 (2017) 1702185.
DOI URL |
[30] |
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Proc, IEEE 86 (1998) 2278-2324.
DOI URL |
[31] | I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost, D. Strukov, in: Proceedings to the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ire- land, July 12-17, 2015. |
[32] | K. He, X. Zhang, S. Ren, J. Sun, in: Proceedings of the IEEE International Confer- ence on Computer Vision, 2015, pp. 1026-1034. ttps://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html. |
[33] |
D. Sulzer, M.S. Sonders, N.W. Poulsen, A. Galli, Prog. Neurobiol. 75 (2005) 406-433.
PMID |
[34] |
O. Larsson, E. Said, M. Berggren, X. Crispin, Adv. Funct. Mater. 19 (2009) 3334-3341.
DOI URL |
[35] |
T. Sung, S.D. Namgung, J. Lee, I.R. Choe, K.T. Nam, J.-Y. Kwon, RSC Adv. 8 (2018) 34047-34055.
DOI URL |
[36] |
N. Liu, Y. Liu, J. Hu, Y. He, X. Zhang, Q. Wan, Appl. Surf. Sci. 481 (2019) 1412-1417.
DOI URL |
[37] | R.C. Atkinson, R.M. Shiffrin, K. Spence, J. Spence, The Psychology of Learning and Motivation, Academic Press, New York, 1968. |
[38] |
L. Guo, Q. Wan, C. Wan, L. Zhu, Y. Shi, IEEE Electron Device Lett 34 (2013) 1581-1583.
DOI URL |
[39] |
J. Zhou, Y. Liu, Y. Shi, Q. Wan, IEEE Electron Device Lett 35 (2014) 280-282.
DOI URL |
[40] |
Y.H. Liu, L.Q. Zhu, P. Feng, Y. Shi, Q. Wan, Adv. Mater. 27 (2015) 5599-5604.
DOI URL |
[41] |
J. Li, Y.-H. Yang, Q. Chen, W.-Q. Zhu, J.-H. Zhang, J. Mater. Chem. C 8 (2020) 4065-4072.
DOI URL |
[42] |
K. Kim, C.L. Chen, Q. Truong, A.M. Shen, Y. Chen, Adv. Mater. 25 (2013) 1693-1698.
DOI URL |
[43] | J.T. Yang, C. Ge, J.Y. Du, H.Y. Huang, M. He, C. Wang, H.B. Lu, G.Z. Yang, K.J. Jin, Adv. Mater. 30 (2018) 1801548. |
[1] | Xin Wei, Dongmei Fu, Mindong Chen, Wei Wu, Dequan Wu, Chao Liu. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environmentAlloying Elements [J]. J. Mater. Sci. Technol., 2021, 64(0): 222-232. |
[2] | Xiaoxiang Xu, Shunhang Wei. (NH4)3PW12O40-H3PO4 composites as efficient proton conductors at intermediate temperatures [J]. J. Mater. Sci. Technol., 2020, 37(0): 128-134. |
[3] | Wei Hu, Zhongwei Ma, Shude Ji, Qi Song, Mingfei Chen, Wenhui Jiang. Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN [J]. J. Mater. Sci. Technol., 2020, 53(0): 41-52. |
[4] | Anil Kunwar, Yuri Amorim Coutinho, Johan Hektor, Haitao Ma, Nele Moelans. Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface [J]. J. Mater. Sci. Technol., 2020, 59(0): 203-219. |
[5] | Liu Qing, junLi He, Zhang Yulei, Zhao Zhigang. Pattern recognition of messily grown nanowire morphologies applying multi-layer connected self-organized feature maps [J]. J. Mater. Sci. Technol., 2019, 35(5): 946-956. |
[6] | Qiangfei Hu, Yuchen Liu, Tao Zhang, Shujiang Geng, Fuhui Wang. Modeling the corrosion behavior of Ni-Cr-Mo-V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network [J]. J. Mater. Sci. Technol., 2019, 35(1): 168-175. |
[7] | Oliaei Erfan,Shiroud Heidari Behzad,Mohammad Davachi Seyed,Bahrami Mozhgan,Davoodi Saeed,Hejazi Iman,Seyfi Javad. Warpage and Shrinkage Optimization of Injection-Molded Plastic Spoon Parts for Biodegradable Polymers Using Taguchi, ANOVA and Artificial Neural Network Methods [J]. J. Mater. Sci. Technol., 2016, 32(8): 710-720. |
[8] | Ali Nazari, Shadi Riahi. Computer-aided Prediction of the ZrO2 Nanoparticles' Effects on Tensile Strength and Percentage of Water Absorption of Concrete Specimens [J]. J Mater Sci Technol, 2012, 28(1): 83-96. |
[9] | V. Arumugamy R. Naren Shankar B.T.N. Sridhar A. Joseph Stanley. Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data [J]. J Mater Sci Technol, 2010, 26(8): 725-729. |
[10] | Ying Liy Changzhen Wang Zhongli Zhang Jiangxin Wang. A Hydrogen Sensor Using SrCe0:95Yb0:05O3-α as Proton Conductor and YHx+Y H2-z as Reference Electrode for Determining Hydrogen Pressure in Solid Steel [J]. J Mater Sci Technol, 2010, 26(10): 957-960. |
[11] | Yanhong WEI, H.K.D.H.Bhadeshia, T.Sourmail. Mechanical Property Prediction of Commercially Pure Titanium Welds with Artificial Neural Network [J]. J Mater Sci Technol, 2005, 21(03): 403-407. |
[12] | Peng ZHANG, Yunhui DU, Hanwu LIU, Daben ZENG, Jianzhong CUI, Limin BA. Semi-solid Pressing Bonding Strength between Steel and Cu-graphite Composite [J]. J Mater Sci Technol, 2005, 21(02): 265-268. |
[13] | Ning FAN, Xiangbo ZE, Zihui GAO. Development of Al¬2O¬3/TiN Ceramic Cutting Tool Materials by Artificial Neural Networks [J]. J Mater Sci Technol, 2004, 20(06): 797-800. |
[14] | Laizhou SONG, Shizhe SONG, Zhiming GAO. Formation of TiO2 Modified Film on Carbon Steel [J]. J Mater Sci Technol, 2004, 20(05): 599-601. |
[15] | Peng ZHANG, Yunhui DU, Hanwu LIU, Daben ZENG, Jianzhong CUI, Limin BA. Interfacial Structure of Steel-Mushy Al-20Sn Bonding Plate [J]. J Mater Sci Technol, 2004, 20(02): 193-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||