J. Mater. Sci. Technol. ›› 2022, Vol. 118: 44-53.DOI: 10.1016/j.jmst.2021.11.057
• Research Article • Previous Articles Next Articles
Z.Q. Chena,b, M.C. Lic, X. Tonga, Y. Zhaoa,b, J.Y. Xied, S.W. Guoe, P. Huange, F. Wangf,g,*(
), H.B. Kea,**(
), B.A. Suna,b,**(
), W.H. Wanga,b
Received:2021-10-31
Revised:2021-11-22
Accepted:2021-11-23
Published:2022-08-10
Online:2022-02-22
Contact:
F. Wang,H.B. Ke,B.A. Sun
About author:sunba@iphy.ac.cn (B.A. Sun).Z.Q. Chen, M.C. Li, X. Tong, Y. Zhao, J.Y. Xie, S.W. Guo, P. Huang, F. Wang, H.B. Ke, B.A. Sun, W.H. Wang. Hardening and toughening effects of intermediate nanosized structures in a confined amorphous alloy film[J]. J. Mater. Sci. Technol., 2022, 118: 44-53.
Fig. 1. (a) Representative cross-sectional TEM micrograph of the CLCA film. The three ALs, i.e., ALs ‘Ⅰ’, ‘Ⅱ’, and ‘Ⅲ’, are divided by two CLs indicated by the white arrows. Note that the TEM image was taken from CLCAannealed and the inset is a representative HRTEM image of a thin CL. (b) XRD patterns of CLCAas-deposited, CLCAquenched, and CLCAannealed.
Fig. 2. Representative HRTEM micrographs of different ALs in three CLCA films: (a-c), (d-f), and (g-i) refer to the ALs ‘Ⅰ’-‘Ⅲ’ in CLCAas-deposited, CLCAquenched, and CLCAannealed, respectively, with corresponding SAD images shown in insets.
Fig. 3. (a) Comparison of hardness at a strain rate of 0.2 s-1 with different h among CLCAas-deposited, CLCAquenched, and CLCAannealed, as well as (b) the extracted hardness increment (ΔH) varies with h in the CLCA film after quenching and annealing treatments.
Fig. 4. (a) Representative engineering stress-strain curves of the three CLCA pillars (the inset is the enlarged image of the deformation part indicated by the rectangle) and the corresponding SEM images for the (b) CLCAas-deposited, (c) CLCAquenched, and (d) CLCAannealed pillars (the insets are the SEM images of the as-fabricated pillars, correspondingly).
Fig. 5. Representative engineering stress-strain curves and the corresponding SEM images of the CLCAas-deposited and CLCAquenched pillars indented to a relatively low strain of (a) ~ 0.18 and (b) ~0.40.
Fig. 7. Cross-sectional TEM micrographs of the residual impressions obtained at the h of 1 μm for (a) CLCAas-deposited and (d) CLCAquenched. The TEM samples were fabricated by a FIB system in the positions indicated by the yellow lines in Fig. 7 (c) and (f). The regions indicated by rectangles i, ii, iii, and iv are enlarged in (b), (c), (f) and (e), respectively, of which (c) and (f) represent the regions right underneath the indenter, while (b) and (e) represent the regions relatively far away from the indenter tip. The inserted SAD images with tag numbers 1-6 are corresponding to the regions indicated by the yellow circles with the same tag numbers.
Fig. 8. HRTEM images of (a) more-sheared region and (b) less-sheared region in CLCAas-deposited, as well as (c) more-sheared region and (d) less-sheared region in CLCAquenched. The dashed yellow line in (a) represents the boundary between SB and the un-sheared region, and the yellow arrow indicates the shear direction.
| [1] |
T.C. Hufnagel, C.A. Schuh, M.L. Falk, Acta Mater. 109 (2016) 375-393.
DOI URL |
| [2] |
M.M. Trexler, N.N. Thadhani, Prog. Mater. Sci. 55 (2010) 759-839.
DOI URL |
| [3] |
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067-4109.
DOI URL |
| [4] |
A.S. Argon, Acta Metall. 27 (1979) 47-58.
DOI URL |
| [5] |
L.T. Zhang, Y.J. Duan, D. Crespo, E. Pineda, Y.J. Wang, J.M. Pelletier, J.C. Qiao, Sci. China Phys. Mech. Astron. 64 (2021) 296111.
DOI URL |
| [6] |
A.L. Greer, Y.Q. Cheng, E. Ma, Mater. Sci. Eng. R Rep. 74 (2013) 71-132.
DOI URL |
| [7] |
N. Yan, Z.Z. Li, Y.B. Xu, M.A. Meyers, Prog. Mater. Sci. 119 (2021) 100755.
DOI URL |
| [8] |
F. Shimizu, S. Ogata, J. Li, Acta Mater. 54 (2006) 4293-4298.
DOI URL |
| [9] |
J.O. Krisponeit, S. Pitikaris, K.E. Avila, S. Küchemann, A. Krüger, K. Samwer, Nat. Commun. 5 (2014) 3616.
DOI PMID |
| [10] |
Y. Zhang, A.L. Greer, Appl. Phys. Lett. 89 (2006) 071907.
DOI URL |
| [11] |
P. Thurnheer, R. Maaß, K.J. Laws, S. Pogatscher, J.F. Löffler, Acta Mater. 96 (2015) 428-436.
DOI URL |
| [12] |
R. Maaß, J.F. Löffler, Adv. Funct. Mater. 25 (2015) 2353-2368.
DOI URL |
| [13] |
T.J. Lei, L.R. DaCosta, M. Liu, J. Shen, Y.H. Sun, W.H. Wang, M. Atzmon, Acta Mater. 195 (2020) 81-86.
DOI URL |
| [14] | P.H. Cao, M.P. Short, S. Yip, Proc. Natl. Acad. Sci. 116 (2019) 18790-18797. |
| [15] | J.C. Qiao, X.D. Liu, Q. Wang, C.T. Liu, L. Jian, Y. Yong, Natl. Sci. Rev. (2018) 616-618. |
| [16] |
Q. Wang, S.T. Zhang, Y. Yang, Y.D. Dong, C.T. Liu, J. Lu, Nat. Commun. 6 (2015) 7876.
DOI PMID |
| [17] |
M. Gao, J.H. Perepezko, Mater. Sci. Eng. A 801 (2021) 140402.
DOI URL |
| [18] |
H.B. Yu, W.H. Wang, K. Samwer, Mater. Today 16 (2013) 183-191.
DOI URL |
| [19] |
W.H. Wang, Prog. Mater. Sci. 106 (2019) 100561.
DOI URL |
| [20] |
X.D. Wang, T.D. Xu, Y. Su, Y. Tang, M. Sprung, Q.P. Cao, D.X. Zhang, J.Z. Jiang, Scr. Mater. 186 (2020) 268-271.
DOI URL |
| [21] |
H.B. Lou, Z.D. Zeng, F. Zhang, S.Y. Chen, P. Luo, X.H. Chen, Y. Ren, V.B. Prakapenka, C. Prescher, X.B. Zuo, T. Li, J.G. Wen, W.H. Wang, H.W. Sheng, Q.S. Zeng, Nat. Commun. 11 (2020) 314.
DOI URL |
| [22] |
Z.Q. Chen, L. Huang, F. Wang, P. Huang, T.J. Lu, K.W. Xu, Mater. Des. 109 (2016) 179-185.
DOI URL |
| [23] |
Z.Q. Chen, P. Huang, K.W. Xu, F. Wang, T.J. Lu, Appl. Phys. Lett. 109 (2016) 261903.
DOI URL |
| [24] |
M.Q. Jiang, G. Wilde, L.H. Dai, Scr. Mater. 127 (2017) 54-57.
DOI URL |
| [25] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 19 (2004) 3-20.
DOI URL |
| [26] |
R.T. Qu, D. Tönnies, L. Tian, Z.Q. Liu, Z.F. Zhang, C.A. Volkert, Acta Mater. 178 (2019) 249-262.
DOI URL |
| [27] |
C.Q. Chen, Y.T. Pei, J.T.M. De Hosson, Acta Mater. 58 (2010) 189-200.
DOI URL |
| [28] |
A. Bharathula, S.W. Lee, W.J. Wright, K.M. Flores, Acta Mater. 58 (2010) 5789-5796.
DOI URL |
| [29] |
A. Dubach, R. Raghavan, J. Loffler, J. Michler, U. Ramamurty, Scr. Mater. 60 (2009) 567-570.
DOI URL |
| [30] |
H.B. Yu, X. Shen, Z. Wang, L. Gu, W.H. Wang, H.Y. Bai, Phys. Rev. Lett. 108 (2012) 015504.
DOI URL |
| [31] |
Q. Yang, C.Q. Pei, H.B. Yu, T. Feng, Nano Lett. 21 (2021) 6051-6056.
DOI PMID |
| [32] | K.S. Zhu, P.J. Tao, C.H. Zhang, Z.H. Zhao, W.J. Zhang, Y.Z. Yang, K. Kaviyarasu, Mater. Today Commun. 27 (2021) 102320. |
| [33] |
H. Huang, M.Q. Jiang, J.W. Yan, J. Alloy. Compd. 857 (2021) 157587.
DOI URL |
| [34] |
Y. Ritter, K. Albe, Acta Mater. 59 (2011) 7082-7094.
DOI URL |
| [35] |
W.H. Jiang, F.E. Pinkerton, M. Atzmon, Acta Mater. 53 (2005) 3469-3477.
DOI URL |
| [36] |
L. Shao, E.G. Fu, L. Price, D. Chen, T.Y. Chen, Y.Q. Wang, G.Q. Xie, D.A. Lucca, Sci. Rep. 5 (2015) 8877.
DOI PMID |
| [37] | S.V. Ketov, Y.P. Ivanov, D. ¸S opu, D.V. Louzguine-Luzgin, C. Suryanarayana, A.O. Rodin, T. Schöberl, A.L. Greer, J. Eckert, Mater. Today Adv. 1 (2019) 100004. |
| [38] |
Q. Yang, S.X. Peng, Z. Wang, H.B. Yu, Natl. Sci. Rev. 7 (2020) 1896-1905.
DOI PMID |
| [39] |
L.J. Wang, N. Xu, W.H. Wang, P. Guan, Phys. Rev. Lett. 120 (2018) 125502.
DOI URL |
| [40] |
Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, J. Sun, Acta Mater. 95 (2015) 132-144.
DOI URL |
| [41] |
R. Saha, W.D. Nix, Acta Mater. 50 (2002) 23-38.
DOI URL |
| [42] |
H. Bei, S. Xie, E.P. George, Phys. Rev. Lett. 96 (2006) 105503.
DOI URL |
| [43] |
G. Wilde, H. Rosner, Appl. Phys. Lett. 98 (2011) 251904.
DOI URL |
| [44] |
K. Wang, T. Fujita, Y.Q. Zeng, N. Nishiyama, A. Inoue, M.W. Chen, Acta Mater. 56 (2008) 2834-2842.
DOI URL |
| [45] |
H. Chen, Y. He, G.J. Shiflet, S.J. Poon, Nature 367 (1994) 541-543.
DOI URL |
| [46] |
J.J. Kim, Y. Choi, S. Suresh, A.S. Argon, Science 295 (2002) 654-657.
PMID |
| [47] |
C. Mingwei, I. Akihisa, Z. Wei, S. Toshio, Phys. Rev. Lett. 96 (2006) 245502.
DOI URL |
| [48] |
J.J. Lewandowski, A.L. Greer, Nat. Mater. 5 (2005) 15-18.
DOI URL |
| [49] |
S.W. Lee, M.Y. Huh, E. Fleury, J.C. Lee, Acta Mater. 54 (2006) 349-355.
DOI URL |
| [50] |
N. Boucharat, R. Hebert, H. Rösner, R. Valiev, G. Wilde, Scr. Mater. 53 (2005) 823-828.
DOI URL |
| [51] |
L.Q. Shen, P. Luo, Y.C. Hu, H.Y. Bai, Y.H. Sun, B.A. Sun, Y.H. Liu, W.H. Wang, Nat. Commun. 9 (2018) 4414.
DOI PMID |
| [52] |
D.B. Miracle, A. Concustell, Y. Zhang, A.R. Yavari, A.L. Greer, Acta Mater. 59 (2011) 2831-2840.
DOI URL |
| [53] |
S. Küchemann, C. Liu, E.M. Dufresne, J. Shin, R. Maaß, Phys. Rev. B 97 (2018) 014204.
DOI URL |
| [54] |
S. Hilke, H. Rösner, D. Geissler, A. Gebert, M. Peterlechner, G. Wilde, Acta Mater. 171 (2019) 275-281.
DOI |
| [55] |
W.H. Jiang, F.E. Pinkerton, M. Atzmon, J. Appl. Phys. 93 (2003) 9287-9290.
DOI URL |
| [56] |
A.R. Yavari, K. Georgarakis, J. Antonowicz, M. Stoica, N. Nishiyama, G. Vaughan, M. Chen, M. Pons, Phys. Rev. Lett. 109 (2012) 085501.
DOI URL |
| [57] |
M.H. Lee, D.H. Bae, D.H. Kim, W.T. Kim, D.J. Sordelet, K.B. Kim, J. Eckert, Scr. Mater. 58 (2008) 651-654.
DOI URL |
| [58] |
M. Stolpe, J.J. Kruzic, R. Busch, Acta Mater. 64 (2014) 231-240.
DOI URL |
| [59] |
J.W. Liu, Q.P. Cao, L.Y. Chen, X.D. Wang, J.Z. Jiang, Acta Mater. 58 (2010) 4827-4840.
DOI URL |
| [60] |
T. Rouxel, J.I. Jang, U. Ramamurty, Prog. Mater. Sci. 121 (2021) 100834.
DOI URL |
| [61] |
K. Hajlaoui, N.H. Alrasheedi, A.R. Yavari, J. Alloy. Compd. 665 (2016) 339-344.
DOI URL |
| [62] |
J. Fornell, E. Rossinyol, S. Suriñach, M.D. Baró, W.H. Li, J. Sort, Scr. Mater. 62 (2010) 13-16.
DOI URL |
| [63] |
Y. Ma, Q.P. Cao, S.X. Qu, X.D. Wang, J.Z. Jiang, Acta Mater. 60 (2012) 3667-3676.
DOI URL |
| [64] | D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Proc. Natl. Acad. Sci. 105 (2008) 14769-14772. |
| [1] | Mengcheng Zhou, Xinfang Zhang. Regulating the recrystallized grain to induce strong cube texture in oriented silicon steel [J]. J. Mater. Sci. Technol., 2022, 96(0): 126-139. |
| [2] | Yipeng Li, Guang Ran, Xinyi Liu, Qing Han, Xiuyin Huang, Yifan Ding. In-situ TEM investigation of dislocation loop reaction and irradiation hardening in H2+-He+ dual-beam irradiated Mo [J]. J. Mater. Sci. Technol., 2022, 107(0): 14-25. |
| [3] | Ahmad Zafari, Edward Wen Chiek Lui, Mogeng Li, Kenong Xia. Enhancing work hardening and ductility in additively manufactured β Ti: roles played by grain orientation, morphology and substructure [J]. J. Mater. Sci. Technol., 2022, 105(0): 131-141. |
| [4] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
| [5] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
| [6] | Wenjie Lu, Xian Luo, Dou Ning, Miao Wang, Chao Yang, Miaoquan Li, Yanqing Yang, Pengtao Li, Bin Huang. Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 112(0): 195-201. |
| [7] | Wenjun He, Lin Ye, Phil Coates, Fin Caton-Rose, Xiaowen Zhao. Reactive processing of poly(lactic acid)/poly(ethylene octene) blend film with tailored interfacial intermolecular entanglement and toughening mechanism [J]. J. Mater. Sci. Technol., 2022, 98(0): 186-196. |
| [8] | T. Fang X., K. Li Z., F. Wang Y., M. Ruiz, L. Ma X., Y. Wang H., Y. Zhu, R. Schoell, C. Zheng, D. Kaoumi, T. Zhu Y.. Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures [J]. J. Mater. Sci. Technol., 2022, 98(0): 244-247. |
| [9] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
| [10] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
| [11] | Z.Q. Chen, M.C. Li, J.S. Cao, F.C. Li, S.W. Guo, B.A. Sun, H.B. Ke, W.H. Wang. Interface dominated deformation transition from inhomogeneous to apparent homogeneous mode in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2022, 99(0): 178-183. |
| [12] | Xu Jing, Guan Bo, Xin Yunchang, Wei Xuedong, Huang Guangjie, Liu Chenglu. A weak texture dependence of Hall-Petch relation in a rare-earth containing magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 251-259. |
| [13] | Taiqian Mo, Zejun Chen, Dayu Zhou, Guangming Lu, Yongmeng Huang, Qing Liu. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites [J]. J. Mater. Sci. Technol., 2022, 99(0): 28-38. |
| [14] | Y.F. Zhao, H.H. Chen, D.D. Zhang, J.Y. Zhang, Y.Q. Wang, K. Wu, G. Liu, J. Sun. Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu [J]. J. Mater. Sci. Technol., 2022, 116(0): 199-213. |
| [15] | L.H. Liu, W.J. Gao, X.S. Huang, T. Zhang, Z.Y. Liu, C. Yang, W.W. Zhang, W.R. Li, L. Li, P.J. Li. Shear-accelerated crystallization of glass-forming metallic liquids in high-pressure die casting [J]. J. Mater. Sci. Technol., 2022, 117(0): 146-157. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
