J. Mater. Sci. Technol. ›› 2022, Vol. 118: 35-43.DOI: 10.1016/j.jmst.2021.11.059
• Research Article • Previous Articles Next Articles
Xi. Raoa,b,*(
), L. Dua,b, J.J. Zhaoa,b, X.D. Tana, Y.X. Fanga,b, L.Q. Xua,b, Y.P. Zhanga,*(
)
Received:2021-05-13
Revised:2021-10-20
Accepted:2021-11-09
Published:2022-08-10
Online:2022-02-22
Contact:
Xi. Rao,Y.P. Zhang
About author:zhangyyping@yahoo.com (Y.P. Zhang).Xi. Rao, L. Du, J.J. Zhao, X.D. Tan, Y.X. Fang, L.Q. Xu, Y.P. Zhang. Hybrid TiO2/AgNPs/g-C3N4 nanocomposite coatings on TC4 titanium alloy for enhanced synergistic antibacterial effect under full spectrum light[J]. J. Mater. Sci. Technol., 2022, 118: 35-43.
Fig. 3. XRD patterns (a), Chemical composition of 0.5CN/60Ag-TC4 surface (b), and XPS spectra of C 1 s (c), N 1 s (d), Ti 2p (e), O 1 s (f), Ag 3d (g) for HT-TC4 and 0.5CN/60Ag-TC4.
Fig. 6. Long term antibacterial activity of 0.5CN/60Ag-TC4: SEM image of samples co-cultured with E. coli for different duration (a), and XPS survey scanning spectra (b), C 1 s spectra (c), Ti 2p spectra (d), Ag 3d spectra (e) of samples immersed in PBS for different duration.
Fig. 7. EPR spectra in the dark and under visible light irradiation, in methanol dispersion for DMAP-•O2- (a) and aqueous dispersion for DMAP-•OH, (b) for TiO2/AgNPs/g-C3N4 samples.
Fig. 8. Transient photocurrent responses (a), EIS spectra (b), UV-Vis absorbance spectra (c) and corresponding Kubelka-Munk transformed reflectance spectra (d).
Fig. 9. UPS spectra (a), Mott-Schottky curves (b), schematic illustration of band structure (c) of 0.5CN/60Ag-TC4, 0.5CN-TC4, and 60Ag-TC4, and photocatalytic antibacterial mechanism of TiO2/AgNPs/g-C3N4 heterojunction (d).
| [1] |
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
DOI URL |
| [2] |
O. Janson, S. Gururaj, S. Pujari-Palmer, M. Karlsson Ott, M. Stromme, H. En-gqvist, K. Welch, Mater. Sci. Eng. C Mater. Biol. Appl. 96 (2019) 272-279.
DOI URL |
| [3] |
H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, C. Ding, Acta Biomater. 8 (2012) 904-915.
DOI PMID |
| [4] |
Z. Jia, P. Xiu, M. Li, X. Xu, Y. Shi, Y. Cheng, S. Wei, Y. Zheng, T. Xi, H. Cai, Z. Liu, Biomaterials 75 (2016) 203-222.
DOI URL |
| [5] |
K. Gulati, H.J. Moon, T. Li, P.T. Sudheesh Kumar, S. Ivanovski, Mater. Sci. Eng. C Mater. Biol. Appl. 91 (2018) 624-630.
DOI URL |
| [6] |
A. Besinis, S.D. Hadi, H.R. Le, C. Tredwin, R.D. Handy, Nanotoxicology 11 (2017) 327-338.
DOI PMID |
| [7] |
A. Rajendran, G. Vinoth, J. Nivedhitha, K.M. Iyer, D.K. Pattanayak, Mater. Sci. Eng. C Mater. Biol. Appl. 99 (2019) 440-449.
DOI URL |
| [8] |
W.A. Camargo, S. Takemoto, J.W. Hoekstra, S.C.G. Leeuwenburgh, J.A. Jansen, J. van den Beucken, H.S. Alghamdi, Acta Biomater. 57 (2017) 511-523.
DOI URL |
| [9] |
S.L. Wu, X.M. Liu, T. Hu, P.K. Chu, J.P.Y. Ho, Y.L. Chan, K.W.K. Yeung, C.L. Chu, T.F. Hung, K.F. Huo, C.Y. Chung, W.W. Lu, K.M.C. Cheung, K.D.K. Luk, Nano Lett. 8 (2008) 3803-3808.
DOI URL |
| [10] |
G. Li, X. Nie, J. Chen, Q. Jiang, T. An, P.K. Wong, H. Zhang, H. Zhao, H. Yamashita, Water Res. 86 (2015) 17-24.
DOI URL |
| [11] | J. Xu, Y. Li, X. Zhou, Y. Li, Z.D. Gao, Y.Y. Song, P. Schmuki, Chemistry 22 (2016) 3947-3951 Easton. |
| [12] |
R. Hao, G. Wang, C. Jiang, H. Tang, Q. Xu, Appl. Surf. Sci. 411 (2017) 400-410.
DOI URL |
| [13] |
K. Kočí, M. Reli, I. Troppová, M. Šihor, J. Kupková, P. Kustrowski, P. Praus, Appl. Surf. Sci. 396 (2017) 1685-1695.
DOI URL |
| [14] |
Z. Lin, S. Wu, X. Liu, S. Qian, P.K. Chu, Y. Zheng, K.M.C. Cheung, Y. Zhao, K.W.K. Yeung, Acta Biomater. 99 (2019) 495-513.
DOI URL |
| [15] |
C. Zhang, Y. Li, D. Shuai, Y. Shen, W. Xiong, L. Wang, Chemosphere 214 (2019) 462-479.
DOI PMID |
| [16] | S.W. Zhao, M. Zheng, H.L. Sun, S.J. Li, Q.J. Pan, Y.R. Guo, Dlton Trans. 49 (2020) 3723-3734. |
| [17] |
G. Dong, K. Zhao, L. Zhang, Chem. Commun. 48 (2012) 6178-6180.
DOI URL |
| [18] |
J. Liu, W. Fang, Z. Wei, Z. Qin, Z. Jiang, W. Shangguan, Appl. Catal. B 238 (2018) 465-470.
DOI URL |
| [19] |
X. Zhang, X. Yuan, L. Jiang, J. Zhang, H. Yu, H. Wang, G. Zeng, Chem. Eng. J. 390 (2020) 124475.
DOI URL |
| [20] |
L. Jiang, X. Yuan, G. Zeng, J. Liang, Z. Wu, H. Yu, D. Mo, H. Wang, Z. Xiao, C. Zhou, J. Colloid Interface Sci. 536 (2019) 17-29.
DOI URL |
| [21] |
D. Ruan, S. Kim, M. Fujitsuka, T. Majima, Appl. Catal. B 238 (2018) 638-646.
DOI URL |
| [22] |
H. Tang, Z. Xia, R. Chen, Q. Liu, T. Zhou, Chem. Asian J. 15 (2020) 3456-3461.
DOI URL |
| [23] |
Q. Liu, J. Huang, L. Wang, X. Yu, J. Sun, H. Tang, RRL Sol. 5 (2021) 2000504.
DOI URL |
| [24] |
Y. Su, G. Liu, C. Zeng, Y. Lu, H. Luo, R. Zhang, Chemosphere 251 (2020) 126381.
DOI URL |
| [25] |
C. Pan, J. Jia, X. Hu, J. Fan, E. Liu, Appl. Surf. Sci. 430 (2018) 283-292.
DOI URL |
| [26] |
P. Wang, X. Guo, L. Rao, C. Wang, Y. Guo, L. Zhang, Environ. Sci. Pollut. Res. Int. 25 (2018) 20206-20216.
DOI URL |
| [27] |
M. Zu, X. Zhou, S. Zhang, S. Qian, D.S. Li, X. Liu, S. Zhang, J. Mater. Sci. Technol. 78 (2021) 202-222.
DOI URL |
| [28] |
L. Han, B. Li, H. Wen, Y. Guo, Z. Lin, J. Mater. Sci. Technol. 70 (2021) 176-184.
DOI URL |
| [29] |
L. Wang, M. Liu, W. Zha, Y. Wei, X. Ma, C. Xu, C. Lu, N. Qin, L. Gao, W. Qiu, R. Sa, X. Fu, R. Yuan, J. Catal. 389 (2020) 533-543.
DOI URL |
| [30] |
X. Bai, R. Zong, C. Li, D. Liu, Y. Liu, Y. Zhu, Appl. Catal. B Environ. 147 (2014) 82-91.
DOI URL |
| [31] |
L. Wang, Y. Hong, E. Liu, Z. Wang, J. Chen, S. Yang, J. Wang, X. Lin, J. Shi, Int. J. Hydrog. Energy 45 (2020) 6425-6436.
DOI URL |
| [32] |
Y. Yuan, L. Zhang, J. Xing, M.I. Utama, X. Lu, K. Du, Y. Li, X. Hu, S. Wang, A. Genç, Nanoscale 7 (2015) 12343.
DOI URL |
| [33] |
S. Thambidurai, P. Gowthaman, M. Venkatachalam, S. Suresh, J. Alloy. Compd. 830 (2020) 154642.
DOI URL |
| [34] |
Q.L. Huang, Z.X. Ouyang, Y.N. Tan, H. Wu, Y. Liu, Acta Biomater. 100 (2019) 415-426.
DOI URL |
| [35] |
Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, ACS Appl. Mater. Interfaces 6 (2014) 14405-14414.
DOI URL |
| [36] |
V. Shanmugam, S. Sanjeevamuthu, K.S. Jeyaperumal, R. Vairamuthu, J. Ind. Eng. Chem. 76 (2019) 318-332.
DOI |
| [37] |
D. Long, H. Dou, X. Rao, Z. Chen, Y. Zhang, Catal. Lett. 149 (2019) 1154-1166.
DOI |
| [38] | J. Chu, Y. Sun, X. Han, B. Zhang, Y. Du, B. Song, P. Xu, ACS Appl. Mater. Inter-faces 11 (2019) 18475-18482. |
| [39] |
Y. Li, R. Wang, H. Li, X. Wei, J. Feng, K. Liu, Y. Dang, A. Zhou, J. Phys. Chem. C 119 (2015) 20283-20292.
DOI URL |
| [40] |
J. Xu, G. Wang, J. Fan, B. Liu, S. Cao, J. Yu, J. Power Sources 274 (2015) 77-84.
DOI URL |
| [41] | Q. Liu, Y. Guo, Z. Chen, Z. Zhang, X. Fang, Appl. Catal. B 183 (2016) 231-241. |
| [42] |
P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22 (2012) 4763-4770.
DOI URL |
| [43] |
F.C.S.M.R. Lopes, M.D.G.C. da Rocha, P. Bargiela, H. Sousa Ferreira, Chem. Eng. Sci. 227 (2020) 115939.
DOI URL |
| [44] |
W. Tao, M. Wang, R. Ali, S. Nie, Q. Zeng, R. Yang, W.M. Lau, L. He, H. Tang, X. Jian, Appl. Surf. Sci. 495 (2019) 143435.
DOI URL |
| [45] |
Z. Han, J. Zhang, Y. Yu, W. Cao, Mater. Lett. 70 (2012) 193-196.
DOI URL |
| [46] |
X. Zhu, H. Xu, Y. Yao, H. Liu, J. Wang, Y. Pu, W. Feng, S. Chen, RSC Adv. 9 (2019) 40003-40012.
DOI URL |
| [47] |
R. Fang, M. He, H. Huang, Q. Feng, J. Ji, Y. Zhan, D.Y.C. Leung, W. Zhao, Chemosphere 213 (2018) 235-243.
DOI URL |
| [48] |
X. Lin, F. Rong, D. Fu, C. Yuan, Powder Technol. 219 (2012) 173-178.
DOI URL |
| [49] |
X. Shen, Y. Zhang, P. Ma, L. Sutrisno, Z. Luo, Y. Hu, Y. Yu, B. Tao, C. Li, K. Cai, Biomaterials 212 (2019) 1-16.
DOI URL |
| [50] |
X. Li, M. Qi, X. Sun, M.D. Weir, F.R. Tay, T.W. Oates, B. Dong, Y. Zhou, L. Wang, H.H.K. Xu, Acta Biomater. 94 (2019) 627-643.
DOI URL |
| [51] |
Y.Z. Huang, S.K. He, Z.J. Guo, J.K. Pi, L. Deng, L. Dong, Y. Zhang, B. Su, L.C. Da, L. Zhang, Z. Xiang, W. Ding, M. Gong, H.Q. Xie, Mater. Sci. Eng. C 94 (2019) 1-10.
DOI URL |
| [52] |
J. Vishnu, V.K. Manivasagam, V. Gopal, C. Bartomeu Garcia, P. Hameed, G. Manivasagam, T.J. Webster, Nanomed. Nanotechnol. Biol. Med. 20 (2019) 102016.
DOI URL |
| [53] |
P. Fu, P. Zhang, Appl. Catal. B 96 (2010) 176-184.
DOI URL |
| [54] |
T. Wassmann, S. Kreis, M. Behr, R. Buergers, Int. J. Implant Dent. 3 (2017) 32.
DOI PMID |
| [55] |
N. Lin, X. Huang, J. Zou, X. Zhang, L. Qin, A. Fan, B. Tang, Surf. Coat. Technol. 209 (2012) 212-215.
DOI URL |
| [56] |
X. Bai, L. Wang, R. Zong, Y. Zhu, J. Phys. Chem. C 117 (2013) 9952-9961.
DOI URL |
| [57] |
Y. Bu, Z. Chen, W. Li, Appl. Catal. B 144 (2014) 622-630.
DOI URL |
| [58] |
H. Dou, Y. Qin, F. Pan, D. Long, X. Rao, G.Q. Xu, Y. Zhang, Catal. Sci. Technol. 9 (2019) 4898-4908.
DOI URL |
| [59] |
Y. Shi, J. Chen, Z. Mao, B.D. Fahlman, D. Wang, J. Catal. 356 (2017) 22-31.
DOI URL |
| [60] |
W. Tao, M. Wang, R. Ali, S. Nie, Q. Zeng, R. Yang, W.M. Lau, L. He, H. Tang, X. Jian, Appl. Surf. Sci. 495 (2019) 143435.
DOI URL |
| [61] |
H.L. Li, Y. Gao, X.Y. Wu, P.H. Lee, K.M. Shih, Appl. Surf. Sci. 402 (2017) 198-207.
DOI URL |
| [62] |
Y. Chen, W. Huang, D. He, S. Yue, H. Huang, ACS Appl. Mater. Interfaces 6 (2014) 14405-14414.
DOI URL |
| [63] |
L. Du, C. Jin, Y. Cheng, L. Xu, X. An, W. Shang, Y. Zhang, X. Rao, J. Alloy. Compd. 842 (2020) 155612.
DOI URL |
| [1] | Jizhou Jiang, Zhiguo Xiong, Haitao Wang, Guodong Liao, Saishuai Bai, Jing Zou, Pingxiu Wu, Peng Zhang, Xin Li. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 118(0): 15-24. |
| [2] | Cheng Cheng, Chung-Li Dong, Jinwen Shi, Liuhao Mao, Yu-Cheng Huang, Xing Kang, Shichao Zong, Shaohua Shen. Regulation on polymerization degree and surface feature in graphitic carbon nitride towards efficient photocatalytic H2 evolution under visible-light irradiation [J]. J. Mater. Sci. Technol., 2022, 98(0): 160-168. |
| [3] | Yangfan Zhang, Yao Li, Han Yu, Kai Yu, Hongbing Yu. Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance [J]. J. Mater. Sci. Technol., 2022, 106(0): 139-146. |
| [4] | Ying Liang, Guohe Huang, Xiaying Xin, Yao Yao, Yongping Li, Jianan Yin, Xiang Li, Yuwei Wu, Sichen Gao. Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: A review [J]. J. Mater. Sci. Technol., 2022, 112(0): 239-262. |
| [5] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
| [6] | Zheao Huang, Qiancheng Zhou, Jieming Wang, Ying Yu. Fermi-level-tuned MOF-derived N-ZnO@NC for photocatalysis: A key role of pyridine-N-Zn bond [J]. J. Mater. Sci. Technol., 2022, 112(0): 68-76. |
| [7] | Jiaqi Dong, Chuxuan Yan, Yingzhi Chen, Wenjie Zhou, Yu Peng, Yue Zhang, Lu-Ning Wang, Zheng-Hong Huang. Organic semiconductor nanostructures: optoelectronic properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 113(0): 175-198. |
| [8] | Daniel González-Muñoz, Almudena Gómez-Avilés, Carmen B. Molina, Jorge Bedia, Carolina Belver, Jose Alemán, Silvia Cabrera. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants [J]. J. Mater. Sci. Technol., 2022, 103(0): 134-143. |
| [9] | Thi Kim Anh Nguyen, Thanh-Truc Pham, Bolormaa Gendensuren, Eun-Suok Oh, Eun Woo Shin. Defect engineering of water-dispersible g-C3N4 photocatalysts by chemical oxidative etching of bulk g-C3N4 prepared in different calcination atmospheres [J]. J. Mater. Sci. Technol., 2022, 103(0): 232-243. |
| [10] | Guiqing Huang, Wanneng Ye, Chunxiao Lv, Denys S. Butenko, Chen Yang, Gaolian Zhang, Ping Lu, Yan Xu, Shuchao Zhang, Hongwei Wang, Yukun Zhu, Dongjiang Yang. Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2022, 108(0): 18-25. |
| [11] | Rohit Kumar, Pankaj Raizada, Aftab Aslam Parwaz Khan, Van-Huy Nguyen, Quyet Van Le, Suresh Ghotekar, Rangabhashiyam Selvasembian, Vimal Gandhi, Archana Singh, Pardeep Singh. Recent progress in emerging BiPO4-based photocatalysts: Synthesis, properties, modification strategies, and photocatalytic applications [J]. J. Mater. Sci. Technol., 2022, 108(0): 208-225. |
| [12] | Derek Hao, Tianyi Ma, Baohua Jia, Yunxia Wei, Xiaojuan Bai, Wei Wei, Bing-Jie Ni. Small molecule π-conjugated electron acceptor for highly enhanced photocatalytic nitrogen reduction of BiOBr [J]. J. Mater. Sci. Technol., 2022, 109(0): 276-281. |
| [13] | Guojing Wang, Zhiwei Tang, Jing Wang, Shasha Lv, Yunjie Xiang, Feng Li, Chong Liu. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. J. Mater. Sci. Technol., 2022, 111(0): 17-27. |
| [14] | Yabin Jiang, Lei Zeng, Chi Cao, Wensheng Yang, Limin Huang. Accumulation of localized charge on the surface of polymeric carbon nitride boosts the photocatalytic activity [J]. J. Mater. Sci. Technol., 2022, 111(0): 9-16. |
| [15] | Yingguang Zhang, Muyan Wu, Yifei Wang, Xiaolong Zhao, Dennis Y.C. Leung. Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method [J]. J. Mater. Sci. Technol., 2022, 116(0): 169-179. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
