J. Mater. Sci. Technol. ›› 2022, Vol. 118: 229-242.DOI: 10.1016/j.jmst.2021.09.069
• Research Article • Previous Articles Next Articles
Zeya Xua,b, Bin Linc, Chaoqian Zhaoa, Yanjin Lua, Tingting Huanga, Yan Chena,b, Jungang Lic, Rongcan Wuc, Wenge Liuc,*(), Jinxin Lina,b,**(
)
Received:
2021-07-21
Revised:
2021-09-18
Accepted:
2021-09-18
Published:
2022-08-10
Online:
2022-02-25
Contact:
Wenge Liu,Jinxin Lin
About author:
** Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China. E-mail addresses: franklin@fjirsm.ac.cn (J. Lin).Zeya Xu, Bin Lin, Chaoqian Zhao, Yanjin Lu, Tingting Huang, Yan Chen, Jungang Li, Rongcan Wu, Wenge Liu, Jinxin Lin. Lanthanum doped octacalcium phosphate/polylactic acid scaffold fabricated by 3D printing for bone tissue engineering[J]. J. Mater. Sci. Technol., 2022, 118: 229-242.
Samples ID | Ca(CH3COO)2·H2O (mmol) | LaCl3·7H2O (mmol) | NH4H2PO4 (mmol) | CO(NH2)2 (mmol) |
---|---|---|---|---|
Undoped OCP | 12.00 | 0 | 9 | 30 |
0.2La-OCP | 11.976 | 0. 024 | 9 | 30 |
0.5La-OCP | 11.94 | 0. 06 | 9 | 30 |
1La-OCP | 11.88 | 0. 12 | 9 | 30 |
Table 1. The respective reactants ratios of all groups.
Samples ID | Ca(CH3COO)2·H2O (mmol) | LaCl3·7H2O (mmol) | NH4H2PO4 (mmol) | CO(NH2)2 (mmol) |
---|---|---|---|---|
Undoped OCP | 12.00 | 0 | 9 | 30 |
0.2La-OCP | 11.976 | 0. 024 | 9 | 30 |
0.5La-OCP | 11.94 | 0. 06 | 9 | 30 |
1La-OCP | 11.88 | 0. 12 | 9 | 30 |
Gene | Direction | Sequence (5′-3′) |
---|---|---|
RUNX-2 | Forward | CAGATTACAGATCCCAGGCAGAC |
Reverse | AGGTGGCAGTGTCATCATCTGAA | |
OCN | Forward | AATAGACTCCGGCGCTACCT |
Reverse | ATAGATGCGCTTGTAGGCGT | |
COL1 | Forward | CGAGTATGGAAGCGAAGGTT |
Reverse | CTTGAGGTTGCCAGTCTGTT | |
CD206 | Forward | GCTTCCGTCACCCTGTATGC |
Reverse | TCATCCGTGGTTCCATAGACC | |
ARG1 | Forward | CAGCAGAGGAGGTGAAGAGTA |
Reverse | TAGTCAGTCCCTGGCTTATGG | |
TNF-α | Forward | GCCGATGGGTTGTACCTTGT |
Reverse | TCTTGACGGCAGAGAGGAGG | |
CCR7 | Forward | TGTACGAGTCGGTGTGCTTC |
Reverse | GGTAGGTATCCGTCATGGTCTTG | |
GAPDH | Forward | ACGGCAAGTTCAACGGCACAG |
Reverse | GAAGACGCCAGTAGACTCCACGAC |
Table 2. Validated primer sequences for real-time PCR.
Gene | Direction | Sequence (5′-3′) |
---|---|---|
RUNX-2 | Forward | CAGATTACAGATCCCAGGCAGAC |
Reverse | AGGTGGCAGTGTCATCATCTGAA | |
OCN | Forward | AATAGACTCCGGCGCTACCT |
Reverse | ATAGATGCGCTTGTAGGCGT | |
COL1 | Forward | CGAGTATGGAAGCGAAGGTT |
Reverse | CTTGAGGTTGCCAGTCTGTT | |
CD206 | Forward | GCTTCCGTCACCCTGTATGC |
Reverse | TCATCCGTGGTTCCATAGACC | |
ARG1 | Forward | CAGCAGAGGAGGTGAAGAGTA |
Reverse | TAGTCAGTCCCTGGCTTATGG | |
TNF-α | Forward | GCCGATGGGTTGTACCTTGT |
Reverse | TCTTGACGGCAGAGAGGAGG | |
CCR7 | Forward | TGTACGAGTCGGTGTGCTTC |
Reverse | GGTAGGTATCCGTCATGGTCTTG | |
GAPDH | Forward | ACGGCAAGTTCAACGGCACAG |
Reverse | GAAGACGCCAGTAGACTCCACGAC |
Samples | La/(La+Ca) molar ratio | |
---|---|---|
Measured value | Expected value | |
Undoped OCP | 0 | 0 |
0.2La-OCP | 0.043 | 0.002 |
0.5La-OCP | 0.048 | 0.005 |
1La-OCP | 0.087 | 0.010 |
Table 3. Expected and measured elemental molar ratio on the surface of undoped OCP and La-OCP powders by XPS.
Samples | La/(La+Ca) molar ratio | |
---|---|---|
Measured value | Expected value | |
Undoped OCP | 0 | 0 |
0.2La-OCP | 0.043 | 0.002 |
0.5La-OCP | 0.048 | 0.005 |
1La-OCP | 0.087 | 0.010 |
Fig. 3. SEM images (A-D) of undoped OCP and La-OCP powders. Bright-field TEM micrographs (E, F), corresponding SAD patterns with the [1 1 0] zone axis (G, H), HRTEM images (I, J), bright-field images after irradiation (K, L) of OCP and 1La-OCP powders. AFM images (M, N) of OCP and 1La-OCP powders.
Samples | Elements (at.%) | La/(La + Ca) molar ratio | (La + Ca)/P molar ratio | ||||
---|---|---|---|---|---|---|---|
Ca | P | La | Measured value | Expected value | Measured value | Expected value | |
Undoped OCP | 20.29±0.85 | 14.24±0.45 | 0 | 0 | 0 | 1.4249 | 1.33 |
0.2La-OCP | 19.97±0.47 | 14.29±0.27 | 0.05±0.01 | 0.0025 | 0.002 | 1.4010 | 1.33 |
0.5La-OCP | 20.78±0.27 | 14.51±0.05 | 0.11±0.02 | 0.0053 | 0.005 | 1.4397 | 1.33 |
1La-OCP | 19.44±0.38 | 14.03±0.26 | 0.19±0.01 | 0.0097 | 0.01 | 1.3991 | 1.33 |
Table 4. Chemical components of undoped OCP and La-OCP powders by EDS.
Samples | Elements (at.%) | La/(La + Ca) molar ratio | (La + Ca)/P molar ratio | ||||
---|---|---|---|---|---|---|---|
Ca | P | La | Measured value | Expected value | Measured value | Expected value | |
Undoped OCP | 20.29±0.85 | 14.24±0.45 | 0 | 0 | 0 | 1.4249 | 1.33 |
0.2La-OCP | 19.97±0.47 | 14.29±0.27 | 0.05±0.01 | 0.0025 | 0.002 | 1.4010 | 1.33 |
0.5La-OCP | 20.78±0.27 | 14.51±0.05 | 0.11±0.02 | 0.0053 | 0.005 | 1.4397 | 1.33 |
1La-OCP | 19.44±0.38 | 14.03±0.26 | 0.19±0.01 | 0.0097 | 0.01 | 1.3991 | 1.33 |
Fig. 6. Surface morphologies of OCP/PLA and La-OCP/PLA scaffolds after mineralization (A-H). Mechanical strength (I, J) of OCP/PLA and La-OCP/PLA scaffolds. Ions release (K, L) after soaking of scaffolds at different time.
Fig. 7. The live/dead staining fluorescence images (A) and proliferation (B) of BMSCs cultured with extract liquid of OCP/PLA and La-OCP/PLA scaffolds. BMSCs adhesion to OCP/PLA and La-OCP/PLA scaffolds (C).
Fig. 8. ALP staining images (A) and Alizarin red staining images of BMSCs (B) cultured with extracts. Osteogenesis relative genes expression of BMSCs cultured with extracts over 7 and 14 days (C, D).
Fig. 9. The live/dead staining fluorescence images (A) and proliferation (B) of RAW264.7 macrophages cultured with extract liquid of OCP/PLA and La-OCP/PLA scaffolds. The expression of anti-inflammation (C) and pro-inflammatory (D) related genes of RAW264.7 macrophages cultured with extracts over 3 days. Detection of M1 and M2 polarization of RAW264.7 macrophages cultured with extracts over 3 days by flow cytometry with macrophages labeled according to CD86 and CD206 expression (E, F).
Fig. 11. H&E and staining and Masson's trichrome staining of the skull specimens implanted with OCP/PLA and La-OCP/PLA scaffolds after 8 weeks of implantation.
[1] |
V. Mourino, A.R. Boccaccini, J. R. Soc. Interface 7 (2010) 209-227.
DOI URL |
[2] | H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, J. Biomed. Mater. Res. B Appl. Biomater. 74 (2010) 782-788. |
[3] |
J.C. Reichert, S. Saifzadeh, M.E. Wullschleger, D.R. Epari, M. Schütz, G.N. Duda, H. Schell, M.V. Griensven, H. Redl, D.W. Hutmacher, Biomaterials 30 (2009) 2149-2163.
DOI URL |
[4] | C. Delloye, O. Cornu, V. Druez, O. Barbier, J. Bone Jt. Surg. Br. 89 (2007) 574-579. |
[5] |
C. Deng, R. Lin, M. Zhang, C. Qin, Q. Yao, L. Wang, J. Chang, C. Wu, Adv. Funct. Mater. 29 (2019) 1806068.
DOI URL |
[6] |
G. Yang, H. Liu, Y. Cui, J. Li, S. Zhang, Biomaterials 268 (2021) 120561.
DOI URL |
[7] | H. Saijo, Y. Fujihara, Y. Kanno, K. Hoshi, A. Hikita, U.I. Chung, T. Takato, Regen. Ther. 5 (2016) 72-78. |
[8] |
S.V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed. 41 (2002) 3130-3146.
DOI URL |
[9] |
N.L. Davison, B.T. Harkel, T. Schoenmaker, X. Luo, H. Yuan, V. Everts, F.B.D. Groot, J.D. Bruijn, Biomaterials 35 (2014) 7441-7451.
DOI PMID |
[10] |
I. Denry, L.T. Kuhn, Dent. Mater. 32 (2016) 43-53.
DOI URL |
[11] |
W. Yu, X. Wang, J. Zhao, Q. Tang, M. Wang, X. Ning, Ceram. Int. 41 (2015) 10600-10606.
DOI URL |
[12] |
E. Boanini, M. Gazzano, A. Bigi, Acta Biomater. 6 (2010) 1882-1894.
DOI PMID |
[13] | A. Bigi, E. Boanini, in: O. Suzuki, G. Insley (Eds.), Functionalization of octa-calcium phosphate for bone replacement, Woodhead Publishing, Octacalcium Phosphate Biomaterials, 2020, pp. 37-54. |
[14] |
O. Suzuki, Y. Shiwaku, R. Hamai, Dent. Mater. J. 39 (2020) 187-199.
DOI PMID |
[15] |
H. Shi, F. He, J. Ye, J. Mater. Chem. B 4 (2016) 1712-1719.
DOI URL |
[16] |
O. Suzuki, M. Nakamura, Y. Miyasaka, M. Kagayama, M. Sakurai, Tohoku J. Exp. Med. 164 (1991) 37.
PMID |
[17] | O. Suzuki, in: O. Suzuki, G. Insley (Eds.), Evolution of octacalcium phos-phate biomaterials, Octacalcium Phosphate Biomaterials, Woodhead Publish-ing, 2020, pp. 1-15. |
[18] | N. Miyatake, K.N. Kishimoto, T. Anada, H. Imaizumi, E. Itoi, O. Suzuki, Bioma-terials 30 (2009) 1005-1014. |
[19] |
Y. Murakami, Y. Honda, T. Anada, H. Shimauchi, O. Suzuki, Acta Biomater. 6 (2010) 1542-1548.
DOI URL |
[20] |
Y. Sai, Y. Shiwaku, T. Anada, K. Tsuchiya, T. Takahashi, Acta Biomater. 69 (2018) 362-371.
DOI URL |
[21] | W.E. Brown, M. Mathew, M.S. Tung, Prog. Cryst. Growth Charact. Mater. 4 (1981) 59-87. |
[22] | H. Shi, X. Ye, J. Zhang, T. Wu, J. Ye, Bioact. Mater. 6 (2021) 1267-1282. |
[23] | H. Shi, S. Yang, S. Zeng, X. Liu, J. Zhang, J. Zhang, T. Wu, X. Ye, T. Yu, C. Zhou, Appl. Mater. Today 15 (2019) 100-114. |
[24] |
Y. Sugiura, H. Obika, M. Horie, K. Niitsu, Y. Makita, ACS Omega 5 (2020) 24434-24444.
DOI PMID |
[25] |
E. Boanini, M. Gazzano, K. Rubini, A. Bigi, Cryst. Growth Des. 10 (2010) 3612-3617.
DOI URL |
[26] | H. Hu, P. Zhao, J. Liu, Q. Ke, D. Hao, J. Nanobiotechnol. 16 (2018) 1987-1997. |
[27] |
K. Wieszczycka, K. Staszak, M. Woźniak-Budych, S. Jurga, Coord. Chem. Rev. 388 (2019) 248-267.
DOI URL |
[28] |
D.M. Weekes, C. Orvig, Chem. Soc. Rev. 45 (2016) 2024-2031.
DOI PMID |
[29] |
S. Rosenberg, U.A. Wehr, J. Anim. Physiol. Anim. Nutr. 96 (2012) 885-894.
DOI URL |
[30] |
J. Aaseth, A.L. Bjorke-Monsen, Curr. Med. Chem. 25 (2018) 113-117.
DOI PMID |
[31] | A. Motameni, A.D. Dalgic, A.Z. Alshemary, D. Keskin, Z. Evis, Mater. Today Conmun. 23 (2020) 101151. |
[32] |
A.J. Hutchison, M.E. Barnett, R. Krause, J.T.C. Kwan, G.A. Siami, Nephron Clin. Pract. 110 (2008) c15-c23.
DOI URL |
[33] |
A.A. Tsyganova, O.A. Golovanova, Inorg. Mater. 53 (2017) 1261-1269.
DOI URL |
[34] |
M. Zhang, R. Lin, X. Wang, J. Xue, C. Wu, Sci. Adv. 6 (2020) eaaz6725.
DOI URL |
[35] |
Y. Yang, X. Li, M. Chu, H. Sun, J. Jin, K. Yu, Q. Wang, Q. Zhou, Y. Chen, Sci. Adv. 5 (2019) eaau9490.
DOI URL |
[36] |
Y. Liu, D. Luo, T. Wang, Small 12 (2016) 4611-4632.
DOI URL |
[37] |
J. Li, X. Cui, G.J. Hooper, K.S. Lim, T. Woodfield, J. Mech. Behav. Biomed. Mater. 105 (2020) 103671.
DOI URL |
[38] | B.F. Langdahl, S. Dempster, D.W. Ther, Adv. Musculoskelet. Dis. 8 (2016) 225-235. |
[39] |
S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Mater. Today 16 (2013) 496-504.
DOI URL |
[40] |
A.C. Jones, C.H. Arns, A.P. Sheppard, D.W. Hutmacher, B.K. Milthorpe, M.A. Knackstedt, Biomaterials 28 (2007) 2491-2504.
DOI URL |
[41] |
P. Kazimierczak, A. Benko, K. Palka, C. Canal, D. Kolodynska, A. Przekora, J. Mater. Sci. Technol. 43 (2020) 52-63.
DOI |
[42] |
E. Kaivosoja, G. Barreto, K. Levón, S. Virtanen, Y.T. Konttinen, Ann. Med. 44 (2012) 635-650.
DOI PMID |
[43] | S.V. Dorozhkin, Calcium, Phosphorus, Renal Bone Disease, and Calciphylaxis, in: Calcium orthophosphate (CaPO4)-based bone-graft substitutes and the special roles of octacalcium phosphate materials, Woodhead Publishing, 2020, pp. 213-287. O. Suzuki, G. Insley (eds.). |
[44] |
L. Zhang, G. Yang, B.N. Johnson, X. Jia, Acta Biomater. 84 (2018) 16-33.
DOI URL |
[45] |
Q. Yan, H. Dong, J. Su, J. Han, S. Bo, Q. Wei, Y. Shi, Engineering 4 (2018) 729-742.
DOI URL |
[46] | J.K. Zhang, W.H. Zhou, H. Wang, K.L. Lin, F.S. Chen, J. Mater. Sci. Technol. 35 (2019) 336-343. |
[47] |
H. Shi, F. He, J. Ye, J. Mater. Chem. B 4 (2016) 1712-1719.
DOI URL |
[48] |
H. Liu, T. Zhang, X.U. Shanjin, K. Wang, Chin. Sci. Bull. 51 (2006) 28-33.
DOI URL |
[49] |
D. Liu, J. Zhang, G. Wang, X. Liu, M. Yang, Biol. Trace Elem. Res. 150 (2012) 433-440.
DOI URL |
[50] |
T. Kokubo, H. Takadama, Biomaterials 27 (2006) 2907-2915.
DOI URL |
[51] |
I. Irmingerfinger, Int. J. Biochem. Cell Biol. 41 (2009) 380-389.
DOI URL |
[52] |
R. Ishiko-Uzuka, T. Anada, K. Ko Ba Yashi, T. Kawai, O. Suzuki, J. Biomed. Mater. Res. B Appl. Biomater. 105 (2017) 1029-1039.
DOI URL |
[53] |
B.O. Fowler, M. Markovic, W.E. Brown, Chem. Mater. 5 (2002) 1417-1423.
DOI URL |
[54] |
R. Xin, Y. Leng, N. Wang, J. Cryst. Growth 289 (2006) 339-344.
DOI URL |
[55] | C.H. Huang, Rare Earth Coordination Chemistry: Fundamentals and Applica- tions, John Wiley & Sons (Asia) Pte Ltd, 2010. |
[56] | R.A. Qazi, K.J. Martin, Calcium, Phosphorus, Renal Bone Disease, and Calciphy-laxis, in: Therapy in Nephrology & Hypertension (Third Edition) , Saunders, 2008, pp. 765-772. |
[57] |
O. Suzuki, Acta Biomater. 6 (2010) 3379-3387.
DOI PMID |
[58] | M. Sun, P.J. Kingham, A.J. Reid, S.J. Armstrong, S. Downes, J. Biomed. Mater. Res. A 93 (2009) 1470-1481. |
[59] |
O. Suzuki, H. Imaizumi, S. Kamakura, T. Katagiri, Curr. Med. Chem. 15 (2008) 305-313.
PMID |
[60] |
X. Yang, L. Zhang, X. Chen, G. Yang, Z. Gou, Acta Biomater. 8 (2011) 1586-1596.
DOI URL |
[61] |
J.F. Cawthray, A.L. Creagh, C.A. Haynes, C. Orvig, lnorg. Chem. 54 (2015) 1440-1445.
DOI URL |
[62] | A. Serret, M.V. Cabanas, M. Vallet-Regí, Chem. Mater. 12 (2011) K155-K157. |
[63] |
M. Wakamura, K. Kandori, T. Ishikawa, Colloids Surf. Physicochem. Eng. Asp. 164 2000) 297-305.
DOI URL |
[64] |
G.N. Kousalya, M.R. Gandhi, C.S. Sundaram, S. Meenakshi, Carbohydr. Polym. 82 (2010) 594-599.
DOI URL |
[65] |
K. Kandori, S. Toshima, M. Wakamura, M. Fukusumi, Y. Morisada, J. Phys. Chem. B 114 (2010) 2399.
DOI URL |
[66] |
S. Wu, X. Liu, K. Yeung, C. Liu, X. Yang, Mater. Sci. Eng. R Rep. 80 (2014) 1-36.
DOI URL |
[67] |
M. He, X. Chen, K. Cheng, W. Weng, H. Wang, ACS. Appl. Mater. Interfaces 8 (2016) 6944-6952.
DOI URL |
[68] |
H. Wang, J.Q. Liu, C.T. Wang, S.G. Shen, X.D. Wang, K.L. Lin, J. Mater. Sci. Technol. 63 (2021) 18-26.
DOI |
[69] |
L.N. Zhong, J.Y. Chen, Z.Y. Ma, H. Feng, S. Chen, H. Cai, Y.Y. Xue, X.B. Pei, J. Wang, Q.B. Wan, Nanoscale 12 (2020) 24437-24449.
DOI URL |
[70] |
H. Qiao, Q. Zou, C. Yuan, X. Zhang, S. Han, Z. Wang, X. Bu, H. Tang, Y. Huang, Ceram. Int. 44 (2018) 16632-16646.
DOI URL |
[71] |
D.D. Liu, K. Ge, J. Sun, S.Z. Chen, G. Jia, J.C. Zhang, RSC Adv. 5 (2015) 42233-42241.
DOI URL |
[72] |
Y.J. Lu, X.C. Xu, C.G. Yang, L. Ren, K. Luo, K. Yang, J.X. Lin, J. Mater. Sci. Technol. 41 (2020) 56-67.
DOI URL |
[73] |
Q. Wang, Y. Tang, Q. Ke, W. Yin, C. Zhang, Y. Guo, J. Guan, J. Mater. Chem. B 8 (2020) 5280-5292.
DOI URL |
[1] | Qianqian Huang, Gehuan Wang, Ming Zhou, Jing Zheng, Shaolong Tang, Guangbin Ji. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture [J]. J. Mater. Sci. Technol., 2022, 108(0): 90-101. |
[2] | Guo-Xiang Zhou, Zhe Zhao, Yan-zhao Zhang, Wen-jin Liu, Zhi-Hua Yang, De-Chang Jia, Yu Zhou. Printing and electromagnetic characteristics of 3D printing frequency selective surface using graphene [J]. J. Mater. Sci. Technol., 2022, 111(0): 49-56. |
[3] | Jeong In Kim, Ju Yeon Kim, Sung-Ho Kook, Jeong-Chae Lee. A novel electrospinning method for self-assembled tree-like fibrous scaffolds: Microenvironment-associated regulation of MSC behavior and bone regeneration [J]. J. Mater. Sci. Technol., 2022, 115(0): 52-70. |
[4] | Qiaolei Li, Xiaolong An, Jingjing Liang, Yongsheng Liu, Kehui Hu, Zhigang Lu, Xinyan Yue, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades [J]. J. Mater. Sci. Technol., 2022, 104(0): 19-32. |
[5] | Mathias Aakyiir, Brayden Tanner, Pei Lay Yap, Hadi Rastin, Tran Thanh Tung, Dusan Losic, Qingshi Meng, Jun Ma. 3D printing interface-modified PDMS/MXene nanocomposites for stretchable conductors [J]. J. Mater. Sci. Technol., 2022, 117(0): 174-182. |
[6] | Aleksandra Krajcer, Joanna Klara, Wojciech Horak, Joanna Lewandowska-Łańcucka. Bioactive injectable composites based on insulin-functionalized silica particles reinforced polymeric hydrogels for potential applications in bone tissue engineering [J]. J. Mater. Sci. Technol., 2022, 105(0): 153-163. |
[7] | Xinyuan Lv, Fang Ye, Laifei Cheng, Litong Zhang. 3D printing “wire-on-sphere” hierarchical SiC nanowires / SiC whiskers foam for efficient high-temperature electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2022, 109(0): 94-104. |
[8] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[9] | Yinling Zhang, Zhuo Chen, Shoujiang Qu, Aihan Feng, Guangbao Mi, Jun Shen, Xu Huang, Daolun Chen. Multiple α sub-variants and anisotropic mechanical properties of an additively-manufactured Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 113-124. |
[10] | Shi Cheng, Jin Ke, Mengyu Yao, Hongwei Shao, Jielong Zhou, Ming Wang, Xiongfa Ji, Guoqing Zhong, Feng Peng, Limin Ma, Yu Zhang. Improved osteointegration and angiogenesis of strontium-incorporated 3D-printed tantalum scaffold via bioinspired polydopamine coating [J]. J. Mater. Sci. Technol., 2021, 69(0): 106-118. |
[11] | Ihsan UIIah, Lei Cao, Wei Cui, Qian Xu, Rui Yang, Kang-lai Tang, Xing Zhang. Stereolithography printing of bone scaffolds using biofunctional calcium phosphate nanoparticles [J]. J. Mater. Sci. Technol., 2021, 88(0): 99-108. |
[12] | Wencheng Liang, Mingli Jiang, Junyong Zhang, Xiaoming Dou, Yan Zhou, Yun Jiang, Li Zhao, Meidong Lang. Novel antibacterial cellulose diacetate-based composite 3D scaffold as potential wound dressing [J]. J. Mater. Sci. Technol., 2021, 89(0): 225-232. |
[13] | Wenyu Wang, Dejun Ding, Kunpeng Zhou, Man Zhang, Weifen Zhang, Fang Yan, Ni Cheng. Prussian blue and collagen loaded chitosan nanofibers with NIR-controlled NO release and photothermal activities for wound healing [J]. J. Mater. Sci. Technol., 2021, 93(0): 17-27. |
[14] | Mehmet Cagirici, Pan Wang, Fern Lan Ng, Mui Ling Sharon Nai, Jun Ding, Jun Wei. Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying [J]. J. Mater. Sci. Technol., 2021, 94(0): 53-66. |
[15] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||