J. Mater. Sci. Technol. ›› 2022, Vol. 118: 243-254.DOI: 10.1016/j.jmst.2021.12.023
• Research Article • Previous Articles
Mun Sik Jeonga, Tak Min Parka, Dong-Il Kimb, Hidetoshi Fujiic, Hye Ji Ime, Pyuck-Pa Choid,*(), Seung-Joon Leeb,*(
), Jeongho Hana,*(
)
Received:
2021-08-23
Revised:
2021-12-04
Accepted:
2021-12-09
Published:
2022-08-10
Online:
2022-03-01
Contact:
Pyuck-Pa Choi,Seung-Joon Lee,Jeongho Han
About author:
jeonghohan@hanyang.ac.kr (J. Han).Mun Sik Jeong, Tak Min Park, Dong-Il Kim, Hidetoshi Fujii, Hye Ji Im, Pyuck-Pa Choi, Seung-Joon Lee, Jeongho Han. Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning[J]. J. Mater. Sci. Technol., 2022, 118: 243-254.
Fig. 1. (a) Schematic illustration of the FSW-processed and TIG-welded plates, showing the milling location and dimensions of the specimens for the Charpy impact test and microstructural analysis. (b) Detailed dimension of Charpy 45 ° V-notch specimens. TD: transverse direction; RD: rolling direction; WD: welding direction; ND: normal direction.
Fig. 2. (a) Process window map after FSW as a function of rotational and traveling speeds under the plunging load between 2000 and 4500 kg. (b) OM and EBSD IQ-phase images of defect-free steels after FSW as a function of rotational and traveling speeds under the plunging load of 4500 kg. In the process window map, the circle marker denotes successful welding, and the X marker means failure. The EBSD IQ-phase maps were taken at the stir zone center from the rolling//welding direction. In the EBSD IQ-phase map, the yellow is retained austenite (γR), the gray is martensite (α′) or ferrite (α), the blue lines are high-angle boundaries (> 15°), and the green lines are low-angle boundaries (3°-15°). RD: rolling direction; WD: welding direction; ND: normal direction; D: grain diameter; VγR: volume fraction of retained austenite.
Fig. 3. (a) OM and (b-d) EBSD images of FSW-processed specimen, which were observed from the rolling//welding direction of steels. EBSD observations were conducted at the region marked in the OM image. In the IQ-phase maps, the color representation is the same as that used in Fig. 2.
Fig. 4. (a) OM and (b-d) EBSD images of TIG-welded specimen, which were observed from the rolling//welding direction of steels. EBSD observations were conducted at the region marked in the OM image. In the IQ-phase maps, the color representation is the same as that used in Fig. 2. The prior austenite grain boundaries (d) were highlighted as the black lines by misorientation angles of 20°-50°
Fig. 5. (a) Vickers hardness profiling of FSW-processed and TIG-welded samples along the dashed lines in the OM images (Figs. 3(a) and 4(a)). (b) XRD patterns of BM, FSW-processed, and TIG-welded samples.
Specimens | Volume fraction of γR | |
---|---|---|
XRD | EBSD | |
BM | 0.413 | 0.400 |
TIG | 0.101 | 0.000 |
FSW | 0.404 | 0.310-0.390 |
Table 1. Volume fraction of retained austenite (γR) in BM, TIG-welded, and FSW-processed specimens, which was measured by XRD and EBSD. Considering the EBSD measurement of welded samples, the γR fraction obtained from the welding center (e.g., stir zone and nugget) was listed.
Specimens | Volume fraction of γR | |
---|---|---|
XRD | EBSD | |
BM | 0.413 | 0.400 |
TIG | 0.101 | 0.000 |
FSW | 0.404 | 0.310-0.390 |
Fig. 6. Microstructural evolutions of the thermo-mechanical affected zone of FSW-processed specimen. The observation area was near the stir zone as marked in Fig. 3(a). Low magnification EBSD (a) IQ-phase map and IPF maps of (b) ferrite (α) or martensite (α′) and (c) retained austenite (γR). (d-g) High magnification EBSD IQ-phase maps at the marked areas in Fig. 6(a). In the IQ-phase maps, the color representation is the same as that used in Fig. 2.
Fig. 8. SEM fractographs of TIG-welded samples fractured at (a) 25 °C and (b) -196 °C. SEM fractographs of FSW-processed samples fractured at (c) 25 °C and (d) -196 °C.
Fig. 9. EBSD IPF maps of (a) TIG-welded sample, and IQ-phase plus IPF maps of (b) FSW-processed samples fractured at -196 °C, which were taken from the normal direction. The black lines are the prior austenite grain boundaries (Fig. 9(a1)). The color representation of IQ-phase maps (Fig. 9(b1, b2)) was the same as that used in Fig. 2.
Fig. 10. SEM fractographs of BM fractured at (a) 25 °C and (b) -196 °C. (c) EBSD IPF and IQ-phase maps of the BM sample fractured at -196 °C, which were taken from the normal direction. In the IPF map, the black lines are the prior austenite grain boundaries. The color representation of IQ-phase maps was the same as that used in Fig. 2.
Fig. 11. (a) Elemental analysis of prior austenite grain boundary (PAGB) of nugget in TIG-welded sample: (a1) SEM micrograph showing a location for APT tip lift-out; (a2) three-dimensional APT result. (b) Elemental analysis of ferrite/ferrite (α/α) interface of stir zone in FSW-processed specimen: (b1) SEM micrograph showing a location for APT tip lift-out and TKD IQ map of APT tip; (b2) TKD phase and IPF maps of APT tip; (b3) three-dimensional APT result. One-dimensional elements profiles of (c) TIG-welded and (d) FSW-processed samples corresponding to black arrows in three-dimensional APT results.
[1] | S.I. Nagashima, T. Ooka, S. Sekino, H. Mimura, T. Fujishima, S. Yano, H. Sakurai, Tetsu To Hagane J. Iron Steel. Inst. Jpn. 11 (1971) 402-411. |
[2] | H. Tagawa, K. Matsui, T. Izawa, I. Watanabe, M. Suzuki, T. Tokunaga, Nippon Kokan Tech. Rep. Overseas 46 (1986) 112-119. |
[3] | I. Watanabe, M. Suzuki, Y. Matsuda, H. Tagawa, K. Matsui, S. Shimada, Nippon Kokan Tech. Rep. Overseas 42 (1984) 2-10. |
[4] |
M. Niikura, J.W. Morris, Metall. Trans. A 11 (1980) 1531-1540.
DOI URL |
[5] |
S.K. Hwang, J.W. Morris, Metall. Trans. A 10 (1979) 545-555.
DOI URL |
[6] |
B.C. Edwards, M. Nasim, E.A. Wilson, Scr. Metall. 12 (1978) 377-380.
DOI URL |
[7] |
M.T. Kim, T.M. Park, K.H. Baik, W.S. Choi, P.P. Choi, J. Han, Acta Mater. 164 (2019) 122-134.
DOI URL |
[8] |
M.S. Jeong, T.M. Park, S. Choi, S.J. Lee, J. Han, Scr. Mater. 190 (2021) 16-21.
DOI URL |
[9] |
D.W. Suh, S.J. Kim, Scr. Mater. 126 (2017) 63-67.
DOI URL |
[10] |
J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.M. Lee, Y.K. Lee, S.I. Lee, B. Hwang, Acta Mater. 122 (2017) 199-206.
DOI URL |
[11] |
Y. Ma, Mater. Sci. Technol. 33 (2017) 1713-1727.
DOI URL |
[12] |
B. Hu, H.W. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33 (2017) 1457-1464.
DOI URL |
[13] | M.J. Roberts, Metall. Trans. 1 (1970) 3287-3294. |
[14] |
K.H. Kwon, I.C. Yi, Y. Ha, K.K. Um, J.K. Choi, K. Hono, K. Oh-ishi, N.J. Kim, Scr. Mater. 69 (2013) 420-423.
DOI URL |
[15] |
N.H. Heo, J.W. Nam, Y.U. Heo, S.J. Kim, Acta Mater. 61 (2013) 4022-4034.
DOI URL |
[16] |
M. Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86 (2015) 182-192.
DOI URL |
[17] |
J. Hu, L.X. Du, G.S. Sun, H. Xie, R.D.K. Misra, Scr. Mater. 104 (2015) 87-90.
DOI URL |
[18] |
M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, D. Raabe, Acta Mater. 85 (2015) 216-228.
DOI URL |
[19] |
J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Mater. Charact. 106 (2015) 108-111.
DOI URL |
[20] |
J.Y. Park, J.M. Lee, M.H. Kim, Metals 6 (2016) 285 (Basel).
DOI URL |
[21] |
J. Yoo, K. Han, Y. Park, C. Lee, Mater. Chem. Phys. 146 (2014) 175-182.
DOI URL |
[22] |
X.Y. Qi, L.X. Du, J. Hu, R.D.K. Misra, Steel Res. Int. 89 (2018) 1700422.
DOI URL |
[23] |
J. Yang, H.G. Dong, Y.Q. Xia, P. Li, X.H. Hao, Y.Q. Wang, W. Wu, B.S. Wang, J. Mater. Sci. Technol. 75 (2021) 48-58.
DOI URL |
[24] |
N. Lun, D.C. Saha, A. Macwan, H. Pan, L. Wang, F. Goodwin, Y. Zhou, Mater. Des. 131 (2017) 450-459.
DOI URL |
[25] |
Q. Jia, L. Liu, W. Guo, Y. Peng, G.S. Zou, Z.L. Tian, Y.N. Zhou, Metals 8 (2018) 48 (Basel).
DOI URL |
[26] |
H. Fujii, R. Ueji, Y. Morisada, H. Tanigawa, Scr. Mater. 70 (2014) 39-42.
DOI URL |
[27] |
M. Ghosh, K. Kumar, R.S. Mishra, Metall. Mater. Trans. A 43 (2012) 1966-1975.
DOI URL |
[28] |
R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50 (2005) 1-78.
DOI URL |
[29] | B. Cullity, S. Stock, Elements of X-ray Diffraction, Pearson Education Limited, New York, 2014 third ed.. |
[30] |
S.J. Lee, T.M. Park, J.H. Nam, W.S. Choi, Y. Sun, H. Fujii, J. Han, Mater. Sci. Eng. A 744 (2019) 340-348.
DOI URL |
[31] |
M.T. Kim, T.M. Park, K.H. Baik, W.S. Choi, J. Han, Mater. Sci. Eng. A 752 (2019) 43-54.
DOI URL |
[32] |
H.J. Pan, H. Ding, M.H. Cai, Mater. Sci. Eng. A 736 (2018) 375-382.
DOI URL |
[33] |
A.S. Magalhães, I.D. Moutinho, I.R. Oliveira, A.O.V. Ferreira, D.S. Alves, D.B. Alves, ISIJ Int. 57 (2017) 1121-1128.
DOI URL |
[34] |
B. Hu, X. Tu, H.W. Luo, X.P. Mao, J. Mater. Sci. Technol. 47 (2020) 131-141.
DOI URL |
[35] |
L. Liu, Z.G. Yang, C. Zhang, W.B. Liu, Mater. Sci. Eng. A 527 (2010) 7204-7209.
DOI URL |
[1] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[2] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[3] | Dong Huang, Yanxin Zhuang. Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening [J]. J. Mater. Sci. Technol., 2022, 108(0): 125-132. |
[4] | Seyed Amir Arsalan Shams, Jae Wung Bae, Jae Nam Kim, Hyoung Seop Kim, Taekyung Lee, Chong Soo Lee. Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 115-128. |
[5] | R.H. Duan, G.M. Xie, P. Xue, Z.Y. Ma, Z.A. Luo, C. Wang, R.D.K. Misra, G.D. Wang. Microstructural refinement mechanism and its effect on toughness in the nugget zone of high-strength pipeline steel by friction stir welding [J]. J. Mater. Sci. Technol., 2021, 93(0): 221-231. |
[6] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
[7] | Yanying Hu, Huijie Liu, Dongrui Li. Contribution of ultrasonic to microstructure and mechanical properties of tilt probe penetrating friction stir welded joint [J]. J. Mater. Sci. Technol., 2021, 85(0): 205-217. |
[8] | Min Cheol Jo, Selim Kim, Dong Woo Suh, Hong Kyu Kim, Yong Jin Kim, Seok Su Sohn, Sunghak Lee. Enhancement of ballistic performance enabled by transformation-induced plasticity in high-strength bainitic steel [J]. J. Mater. Sci. Technol., 2021, 84(0): 219-229. |
[9] | Yu Fu, Wenlong Xiao, Junshuai Wang, Lei Ren, Xinqing Zhao, Chaoli Ma. A novel strategy for developing α + β dual-phase titanium alloys with low Young’s modulus and high yield strength [J]. J. Mater. Sci. Technol., 2021, 76(0): 122-128. |
[10] | Yu Han, Huabing Li, Hao Feng, Kemei Li, Yanzhong Tian, Zhouhua Jiang. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying [J]. J. Mater. Sci. Technol., 2021, 65(0): 210-215. |
[11] | Di Wan, Yan Ma, Binhan Sun, Seyed Mohammad Javad Razavi, Dong Wang, Xu Lu, Wenwen Song. Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope [J]. J. Mater. Sci. Technol., 2021, 85(0): 30-43. |
[12] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[13] | D.P. Yang, P.J. Du, D. Wu, H.L. Yi. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process [J]. J. Mater. Sci. Technol., 2021, 75(0): 205-215. |
[14] | Yong Hee Jo, Junha Yang, Won-Mi Choi, Kyung-Yeon Doh, Donghwa Lee, Hyoung Seop Kim, Byeong-Joo Lee, Seok Su Sohn, Sunghak Lee. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 76(0): 222-230. |
[15] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||