J. Mater. Sci. Technol. ›› 2022, Vol. 118: 208-217.DOI: 10.1016/j.jmst.2021.12.026
• Research Article • Previous Articles Next Articles
Jun Lia,b, Cuiwei Dub,c,d,*(), Zhiyong Liub,c,d,*(
), Xiaogang Lib,c,d
Received:
2021-09-07
Revised:
2021-12-03
Accepted:
2021-12-17
Published:
2022-08-10
Online:
2022-03-01
Contact:
Cuiwei Du,Zhiyong Liu
About author:
liuzhiyong7804@126.com (Z. Liu).Jun Li, Cuiwei Du, Zhiyong Liu, Xiaogang Li. Electrochemical studies of microbiologically influenced corrosion of X80 steel by nitrate-reducing Bacillus licheniformis under anaerobic conditions[J]. J. Mater. Sci. Technol., 2022, 118: 208-217.
Element | C | Si | Mn | P | S | Cr |
---|---|---|---|---|---|---|
Content (wt.%) | 0.093 | 0.069 | 1.85 | 0.013 | 0.0068 | 0.30 |
Element | Ni | Cu | Al | Ti | Mo | Fe |
Content (wt.%) | 0.15 | 0.19 | 0.038 | 0.011 | 0.095 | Bal. |
Table 1. Chemical compositions of X80 steel.
Element | C | Si | Mn | P | S | Cr |
---|---|---|---|---|---|---|
Content (wt.%) | 0.093 | 0.069 | 1.85 | 0.013 | 0.0068 | 0.30 |
Element | Ni | Cu | Al | Ti | Mo | Fe |
Content (wt.%) | 0.15 | 0.19 | 0.038 | 0.011 | 0.095 | Bal. |
Top-hit taxon | Top-hit strain | Top-hit similarity (%) |
---|---|---|
Bacillus licheniformis | RJ48 | 99.93 |
KJN-1 | ||
HT18 | ||
DC3-1 | ||
B21-023 | ||
XJ-P95 |
Table 2. Bacterial identification according to 16S RNA sequencing.
Top-hit taxon | Top-hit strain | Top-hit similarity (%) |
---|---|---|
Bacillus licheniformis | RJ48 | 99.93 |
KJN-1 | ||
HT18 | ||
DC3-1 | ||
B21-023 | ||
XJ-P95 |
Fig. 2. OCP of X80 steel during 28-day immersing under sterile conditions or in B. licheniformis culture (Error bar: range of variation in measurement for 60 min).
Fig. 3. Pourbaix diagram of $\text{Fe}-{{\text{H}}_{2}}\text{PO}_{4}^{-}/\text{HPO}_{4}^{2-}-{{\text{H}}_{2}}\text{O}$ system based on thermodynamic calculation shown in Table 3. (The abbreviations st and in represent sterile and inoculated, respectively).
1 | Fe→Fe2+2e- | |
2 | Fe+2H2O→Fe(OH)2+2H+2e- | |
3 | Fe2++2H2O→Fe(OH)2+2H+ | |
4 | | |
5 | | |
6 | | |
7 | 2H+2e-→H2 | |
8 | O2+2H2O+4e-→4OH- | |
Table 3. Reactions and their E-pH equations in Fig. 3 (vs SHE).
1 | Fe→Fe2+2e- | |
2 | Fe+2H2O→Fe(OH)2+2H+2e- | |
3 | Fe2++2H2O→Fe(OH)2+2H+ | |
4 | | |
5 | | |
6 | | |
7 | 2H+2e-→H2 | |
8 | O2+2H2O+4e-→4OH- | |
1 | Fe→Fe2++2e- | |
2 | Fe+2H2O→Fe(OH)2+2H++2e- | |
3 | Fe2++2H2O→Fe(OH)2+2H+ | |
4 | | |
5 | | |
6 | | |
7 | | |
8 | | |
9 | 2H++2e-→H2 | |
10 | O2+2H2O+4e-→4OH- | |
Table 4. Reactions and their E-pH equations in Fig. 10.
1 | Fe→Fe2++2e- | |
2 | Fe+2H2O→Fe(OH)2+2H++2e- | |
3 | Fe2++2H2O→Fe(OH)2+2H+ | |
4 | | |
5 | | |
6 | | |
7 | | |
8 | | |
9 | 2H++2e-→H2 | |
10 | O2+2H2O+4e-→4OH- | |
Fig. 4. EIS of X80 steel during 28-day immersing under sterile conditions (Left: Nyquist planes; Right: Bode diagrams; Scatter: Raw data; Line: fitting curves).
Fig. 5. EIS of X80 steel during 28-day immersing in B. licheniformis culture (Left: Nyquist planes; Right: Bode diagrams; Scatter: Raw data; Line: fitting curves).
Fig. 10. Pourbaix diagram of $\text{Fe}-{{\text{H}}_{2}}\text{PO}_{4}^{-}/\text{HPO}_{4}^{2-}-{{\text{H}}_{2}}\text{O}$ system including nitrate reduction based on thermodynamic calculation shown in Table 4.
[1] |
A.C. Alvarez Yela, M.A. Tibaquirá Martínez, G.A. Rangel Piñeros, V.C. López, S.H. Villamizar, V.L. Núñez Vélez, W.R. Abraham, M.J. Vives Flórez, A.F. González Barrios, Int. Biodeterior. Biodegrad. 112 (2016) 59-65.
DOI URL |
[2] |
G. Voordouw, Curr. Opin. Biotechnol. 22 (2011) 401-405.
DOI URL |
[3] |
K.M. Usher, A.H. Kaksonen, I. Cole, D. Marney, Int. Biodeterior. Biodegrad. 93 (2014) 84-106.
DOI URL |
[4] |
I.B. Beech, J. Sunner, Curr. Opin. Biotechnol. 15 (2004) 181-186.
DOI URL |
[5] |
A. Marciales, Y. Peralta, T. Haile, T. Crosby, J. Wolodko, Corros. Sci. 146 (2019) 99-111.
DOI |
[6] |
F. Teng, Y.T. Guan, W.P. Zhu, Corros. Sci. 50 (2008) 2816-2823.
DOI URL |
[7] |
W. Sowards, E. Mansfield, Corros. Sci. 87 (2014) 460-471.
DOI URL |
[8] |
A. Heyer, F. D’Souza, C.F.L. Morales, G. Ferrari, J.M.C. Mol, J.H.W. de Wit, Ocean Eng. 70 (2013) 188-200.
DOI URL |
[9] | G.A. Jacobson, Mater. Perform. 46 (2007) 26-34. |
[10] |
R.K. Bhagobaty, Rev. Environ. Sci. Biotechnol. 13 (2014) 11-16.
DOI URL |
[11] | Pipeline Accident Report Natural Gas Pipeline Rupture and Fire Near Carls- bad, US National Transportation Safety Board, New Mexico, 2000 (No. NTSB/PAR-03/01). |
[12] |
C. Zhang, F. Wen, Y. Cao, Procedia Environ. Sci. 10 (2011) 1177-1182.
DOI URL |
[13] |
H.C. Qian, D.W. Zhang, Y.T. Lou, Z.Y. Li, D.K. Xu, C.W. Du, X.G. Li, Corros. Sci. 145 (2018) 151-161.
DOI URL |
[14] |
H.C. Qian, L.W. Ma, D.W. Zhang, Z.Y. Li, L.Y. Huang, Y.T. Lou, C.W. Du, J. Mater. Sci. Technol. 46 (2020) 12-20.
DOI URL |
[15] |
P. Yi, K. Xiao, C.F. Dong, S.W. Zou, X.G. Li, Bioelectrochemistry 119 (2018) 203-210.
DOI URL |
[16] |
Y. Lekbach, T. Liu, Y.C. Li, M. Moradi, W.W. Dou, D.K. Xu, J.A. Smith, D.R. Lovley, Adv. Microb. Physiol. 78 (2021) 317-390.
DOI PMID |
[17] |
H.Y. Tang, C.T. Yang, T. Ueki, C.C. Pittman, T.L. Woodard, D.E. Holmes, T.Y. Gu, F.H. Wang, D.R. Lovely, ISME J. 15 (2021) 3084-3093.
DOI URL |
[18] |
B.X. Wei, J. Xu, Q. Fu, Q.Y. Qin, Y.L. Bai, C. Sun, C. Wang, Z.Y. Wang, W. Ke, J. Mater. Sci. Technol. 87 (2021) 1-17.
DOI URL |
[19] |
Y.C. Li, D.K. Xu, C.F. Chen, X.G. Li, R. Jia, D.W. Zhang, W. Sand, F.H. Wang, T.Y. Gu, J. Mater. Sci. Technol. 34 (2018) 1713-1718.
DOI URL |
[20] |
D.K. Xu, Y.C. Li, T.Y. Gu, Bioelectrochemistry 110 (2016) 52-58.
DOI URL |
[21] | C.A.H. von Wolzogen Kühr, L.S. van der-Vlugt, Water 18 (1964) 147-165. |
[22] | R. He, N. Dai, Z.J. Wang, Adv. Civ. Eng. Mater. 2020 (2020) 7532703. |
[23] |
R.D. Bryant, E.J. Laishley, Can. J. Microbiol. 36 (1990) 259-264.
DOI URL |
[24] |
Y.Q. Dong, Y. Lekbach, Z. Li, D.K. Xu, S.E. Abed, S.I. Koraichi, F.H. Wang, J. Mater. Sci. Technol. 37 (2020) 200-206.
DOI URL |
[25] |
H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann, F. Widdel, Nature 427 (2004) 829-932.
DOI URL |
[26] |
K. Mori, H. Tsurumaru, S. Harayama, J. Biosci. Bioeng. 110 (2010) 426-430.
DOI URL |
[27] |
D. Liu, H.Y. Yang, J.H. Li, J.Q. Li, Y.Z. Dong, C.T. Yang, Y.T. Jin, L. Yassir, Z. Li, D. Hernandez, D.K. Xu, F.H. Wang, J.A. Smith, J. Mater. Sci. Technol. 79 (2021) 101-108.
DOI URL |
[28] |
H. Venzlaff, D. Enning, J. Srinivasan, K.J. Mayrhofer, A.W. Hassel, F. Widdel, M. Stratmann, Corros. Sci. 66 (2013) 88-96.
DOI URL |
[29] |
E. Zhou, J.J. Wang, M. Moradi, H.B. Li, D.K. Xu, Y.T. Lou, J.T. Luo, L.F. Li, Y. Wang, Z. Yang, F. Wang, J.A. Smith, J. Mater. Sci. Technol. 48 (2020) 72-83.
DOI URL |
[30] |
T.Y. Gu, R. Jia, T. Unsal, D.K. Xu, J. Mater. Sci. Technol. 35 (2019) 631-636.
DOI URL |
[31] | D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann, F. Widdel, Environ. Microbial. 14 (2012) 1772-1787. |
[32] |
H.Y. Tang, D.E. Holmes, T. Ueki, P.A. Palacios, D.R. Lovley, mBio 10 (2019) e0030319.
DOI URL |
[33] | T.Y. Gu, K.L. Zhao, S. Nesic, in: Proceedings of the CORROSION-National Associ- ation of Corrosion Engineers Conference and Exposition, Atlanta, Georgia, USA, 2009 March, 22. |
[34] |
I.O. Arukalam, C.N. Njoku, L.H. Yang, B.R. Hou, Y. Li, J. Mater. Sci. Technol. 52 (2020) 198-206.
DOI URL |
[35] |
H.Y. Tang, C.T. Yang, T. Ueki, C.C. Pittman, D.K. Xu, T.L. Woodard, D.E. Holmes, T.Y. Gu, F.H. Wang, D.R. Lovley, ISME J. 15 (2021) 3084-3093.
DOI URL |
[36] |
A. Rajasekar, B. Anandkumar, S. Maruthamuthu, Y.P. Ting, P.K.S.M. Rahman, Appl. Microbiol. Biotechnol. 85 (2010) 1175-1188.
DOI PMID |
[37] |
J.M. Marques, F.P. Almeida, U. Lins, L. Seldin, E. Korenblum, World J. Microbiol. Biotechnol. 28 (2012) 2355-2363.
DOI URL |
[38] |
J. Li, Z.Y. Liu, Y.T. Lou, C.W. Du, X.G. Li, Corros. Sci. 168 (2020) 108569.
DOI URL |
[39] |
J. Li, Z.Y. Liu, C.W. Du, X.G. Li, Corros. Sci. 173 (2020) 108763.
DOI URL |
[40] |
C.A. Melendres, N. Camillone, T. Tipton, Electrochim. Acta 34 (1989) 281-286.
DOI URL |
[41] | J.T. Maloy, A.J. Bard, R. Parsons, J. Jordan, in: Standard Potentials in Aqueous Solution, CRC Press, New York, 1985, pp. 127-188. |
[42] | R.K. Thauer, E. Stackebrandt, W.A. Hamilton, L.L. Barton, W.A. Hamilton, in: Sul-phate-Reducing Bacteria: Environmental and Engineered Systems, Cambridge University Press, Cambridge, 2007, pp. 1-37. |
[43] |
M.J. Alowitz, M.M. Scherer, Environ. Sci. Technol. 36 (2002) 299-306.
DOI URL |
[1] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[2] | Junlei Wang, Hongfang Liu, Magdy El-Said Mohamed, Mazen A.Saleh, Tingyue Gu. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A [J]. J. Mater. Sci. Technol., 2022, 107(0): 43-51. |
[3] | Meiying Lv, Xuchao Chen, Zhenxin Li, Min Du. Effect of sulfate-reducing bacteria on hydrogen permeation and stress corrosion cracking behavior of 980 high-strength steel in seawater [J]. J. Mater. Sci. Technol., 2021, 92(0): 109-119. |
[4] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
[5] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[6] | Dan Liu, Hongying Yang, Jianhui Li, Jiaqi Li, Yizhe Dong, Chuntian Yang, Yuting Jin, Lekbach Yassir, Zhong Li, David Hernandez, Dake Xu, Fuhui Wang, Jessica A. Smith. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2021, 79(0): 101-108. |
[7] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[8] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[9] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
[10] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[11] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[12] | Yuqiao Dong, Yassir Lekbach, Zhong Li, Dake Xu, Soumya El Abed, Saad Ibnsouda Koraichi, Fuhui Wang. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae [J]. J. Mater. Sci. Technol., 2020, 37(0): 200-206. |
[13] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[14] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
[15] | Dan Liu, Ru Jia, Dake Xu, Hongying Yang, Ying Zhao, M. saleem Khan, Songtao Huang, Jiankang Wen, Ke Yang, Tingyue Gu. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti [J]. J. Mater. Sci. Technol., 2019, 35(11): 2494-2502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||