J. Mater. Sci. Technol. ›› 2022, Vol. 118: 199-207.DOI: 10.1016/j.jmst.2022.01.003
• Research Article • Previous Articles Next Articles
Zhenxin Huang, Zixuan Wang, Bofang Tian, Tingting Xu, Caiyun Ma, Zhuangfei Zhang, Jinhao Zang, Dezhi Kong, Xinjian Li, Ye Wang()
Received:
2021-11-07
Revised:
2021-12-25
Accepted:
2022-01-08
Published:
2022-08-10
Online:
2022-02-25
Contact:
Ye Wang
About author:
* E-mail address: wangye@zzu.edu.cn (Y. Wang).Zhenxin Huang, Zixuan Wang, Bofang Tian, Tingting Xu, Caiyun Ma, Zhuangfei Zhang, Jinhao Zang, Dezhi Kong, Xinjian Li, Ye Wang. Three-dimensional Au/carbon nanotube-graphene foam hybrid nanostructure for dendrite free sodium metal anode with long cycle stability[J]. J. Mater. Sci. Technol., 2022, 118: 199-207.
Fig. 1. (a) Schematic diagram of the preparation process of 3D Au/CNT-GF nanostructure. (b-d) SEM images of 3D Au/CNT-GF at different magnifications. Inset in (b) is a digital image to show the flexibility of 3D Au/CNT-GF nanostructure. (e, f) TEM and (g) HRTEM images of 3D Au/CNT-GF nanostructures. (h) SEM image of 3D Au/CNT-GF nanostructure. (i, j) Corresponding EDS element mapping of Au and C, respectively.
Fig. 3. The current density distribution on (a) Cu, (b) 3D CNT-GF and (c) 3D Au/CNT-GF electrodes simulated by COMSOL Multiphysics. In-situ optical photos of Na deposition on (d) Cu, (e) 3D CNT-GF and (f) 3D Au/CNT-GF taken by a digital camera. The scale bars in (d-f) are 400 µm. Schematic diagrams of Na metal deposition on (g) Cu, (h) 3D CNT-GF and (i) 3D Au/CNT-GF electrodes.
Fig. 4. Electrochemical performance of Cu, 3D CNT-GF and 3D Au/CNT-GF electrodes. (a) CEs of these three electrodes at a current of 1 mA cm-2 with a capacity of 1 mAh cm-2. (b) The rate performance of Cu, 3D CNT-GF and 3D Au/CNT-GF electrodes at different current densities with a capacity of 1 mAh cm-2. (c) Voltage-capacity curves of 3D CNT-GF and (d) 3D Au/CNT-GF electrodes at different current densities derived from (b). (e) Overpotentials of Cu, 3D CNT-GF and 3D Au/CNT-GF electrodes at different current densities. (f) EIS of 3D CNT-GF and 3D Au/CNT-GF electrodes before cycles and after the 30th cycle. Inset shows the equivalent circuit model used for EIS. (g) Voltage profiles of Cu, 3D CNT-GF and 3D Au/CNT-GF electrodes at 1 mA cm-2 with 1 mAh cm-2. Insert shows the short circuit curve of Cu electrode at 75 h. (h) Voltage profiles of 3D Au/CNT-GF anode at 5 mA cm-2 with 1 mAh cm-2.
Sample | Rs (Ω) | Rct (Ω) |
---|---|---|
3D CNT-GF before cycles | 3.6 | 117.5 |
3D CNT-GF 30th | 2.1 | 21.0 |
3D Au/CNT-GF before cycles | 2.6 | 99.3 |
3D Au/CNT-GF 30th | 1.7 | 9.3 |
Table 1. Interface resistance and charge transfer resistance of 3D CNT-GF and 3D Au/CNT-GF electrodes before cycles and after 30th cycles.
Sample | Rs (Ω) | Rct (Ω) |
---|---|---|
3D CNT-GF before cycles | 3.6 | 117.5 |
3D CNT-GF 30th | 2.1 | 21.0 |
3D Au/CNT-GF before cycles | 2.6 | 99.3 |
3D Au/CNT-GF 30th | 1.7 | 9.3 |
Materials | Electrolyte | Overpotential | Electrochemical performance (current density (mA cm-2), areal capacity (mAh cm-2), time (h)) | Refs. |
---|---|---|---|---|
DGCF | NaPF6 in diglyme | 20 mV@1 mA cm-2 | 1, 1, 1200 | [ |
Empty Cell | 2, 1, 1200 | |||
Au/CF | NaCF3SO3 in diglyme | 3 mV @0.5 mA cm-2 | 2, 1, 1000 | [ |
NCF | NaPF6 in diglyme | 6 mV@0.25 mA cm-2 | 2, 2, 3500 | [ |
Empty Cell | 10 mV@1 mA cm-2 | 4, 2, 950 | ||
Empty Cell | 27 mV@4 mA cm-2 | |||
OCF | 0.01 M NaTFSI + 1.0 M NaCF3SO3 in diglyme. | 9 mV@0.5 mA cm-2 | 0.5, 1, 8000 | [ |
Empty Cell | 11.4 mV@1 mA cm-2 | 1, 1, > 3000 | ||
Empty Cell | 12.7 mV@2 mA cm-2 | 2, 1, 2000 | ||
Empty Cell | 15.7 mV@5 mA cm-2 | |||
NG-NF | NaPF6 in diglyme | 28 mV@0.5 mA cm-2 | 0.5, 1, 800 | [ |
Empty Cell | 1, 1, 400 | |||
3D Au/CNT-GF | NaPF6 in diglyme | 2.1 mV@0.5 mA cm-2 | 1, 1, 2600 | This work |
Empty Cell | 2.8 mV@1 mA cm-2 | 5, 1, 300 | ||
Empty Cell | 4.3 mV@2 mA cm-2 | |||
Empty Cell | 5.9 mV@4 mA cm-2 | |||
Empty Cell | 12.1 mV@5 mA cm-2 |
Table 2. Comparison of the electrochemical performance of various carbon-based Na metal hosts.
Materials | Electrolyte | Overpotential | Electrochemical performance (current density (mA cm-2), areal capacity (mAh cm-2), time (h)) | Refs. |
---|---|---|---|---|
DGCF | NaPF6 in diglyme | 20 mV@1 mA cm-2 | 1, 1, 1200 | [ |
Empty Cell | 2, 1, 1200 | |||
Au/CF | NaCF3SO3 in diglyme | 3 mV @0.5 mA cm-2 | 2, 1, 1000 | [ |
NCF | NaPF6 in diglyme | 6 mV@0.25 mA cm-2 | 2, 2, 3500 | [ |
Empty Cell | 10 mV@1 mA cm-2 | 4, 2, 950 | ||
Empty Cell | 27 mV@4 mA cm-2 | |||
OCF | 0.01 M NaTFSI + 1.0 M NaCF3SO3 in diglyme. | 9 mV@0.5 mA cm-2 | 0.5, 1, 8000 | [ |
Empty Cell | 11.4 mV@1 mA cm-2 | 1, 1, > 3000 | ||
Empty Cell | 12.7 mV@2 mA cm-2 | 2, 1, 2000 | ||
Empty Cell | 15.7 mV@5 mA cm-2 | |||
NG-NF | NaPF6 in diglyme | 28 mV@0.5 mA cm-2 | 0.5, 1, 800 | [ |
Empty Cell | 1, 1, 400 | |||
3D Au/CNT-GF | NaPF6 in diglyme | 2.1 mV@0.5 mA cm-2 | 1, 1, 2600 | This work |
Empty Cell | 2.8 mV@1 mA cm-2 | 5, 1, 300 | ||
Empty Cell | 4.3 mV@2 mA cm-2 | |||
Empty Cell | 5.9 mV@4 mA cm-2 | |||
Empty Cell | 12.1 mV@5 mA cm-2 |
Fig. 5. (a) Schematic diagram of a full SIB with Na@3D Au/CNT-GF anode and NVP@C cathode. (b) Galvanostatic discharging/charging curves of NVP@C cathode (red line) and Na@3D Au/CNT-GF anode (black line). (c) Galvanostatic discharging/charging curves of the Na@3D Au/CNT-GF||NVP@C full battery at 100 mA g-1. (d) Cycling performance of Na@3D Au/CNT-GF||NVP@C full cell at 100 mA g-1.
[1] |
J. Zhang, Y. Liu, X. Zhao, L. He, H. Liu, Y. Song, S. Sun, Q. Li, X. Xing, J. Chen, Adv. Mater. 32 (2020) 1906348.
DOI URL |
[2] |
Y. Liu, Q. Shen, X. Zhao, J. Zhang, X. Liu, T. Wang, N. Zhang, L. Jiao, J. Chen, L.Z. Fan, Adv. Funct. Mater. 30 (2020) 1907837.
DOI URL |
[3] |
H.Q. Zhao, C.F. Zhuang, J.M. Xu, Z.F. Zhang, W.X. Shen, H.B. Tang, Y. Wang, T.T. Xu, X.C. Wang, X.J. Li, Ionics 26 (2020) 5019-5028.
DOI URL |
[4] |
B. Lee, E. Paek, D. Mitlin, S.W. Lee, Chem. Rev. 119 (2019) 5416-5460.
DOI |
[5] |
S.Y. Wei, S. Choudhury, J. Xu, P. Nath, Z.Y. Tu, L.A. Archer, Adv. Mater. 29 (2017) 1605512.
DOI URL |
[6] |
H.Z. Tian, Z.W. Seh, K. Yan, Z.H. Fu, P. Tang, Y.Y. Lu, R.F. Zhang, D. Legut, Y. Cui, Q.F. Zhang, Adv. Energy Mater. 7 (2017) 1602528.
DOI URL |
[7] |
Y. Zhao, K.R. Adair, X.L. Sun, Energy Environ. Sci. 11 (2018) 2673-2695.
DOI URL |
[8] |
B. Sun, P. Li, J.Q. Zhang, D. Wang, P. Munroe, C.Y. Wang, P.H.L. Notten, G.X. Wang, Adv. Mater. 30 (2018) 1801334.
DOI URL |
[9] |
C. Jiang, W. Zhou, Z. Zou, J. Mater. Sci. Technol. 83 (2021) 188-195.
DOI URL |
[10] | C.B. Soni, V. Kumar, Z.W. Seh, Batter. Supercaps 5 (2022) e202100207. |
[11] |
D. Wu, J.W. Guo, J. Du, C.X. Xia, L.H. Zeng, Y.Z. Tian, Z.F. Shi, Y.T. Tian, X.J. Li, Y.H. Tsang, J.S. Jie, ACS Nano 13 (2019) 9907-9917.
DOI URL |
[12] |
B. Sun, P. Xiong, U. Maitra, D. Langsdorf, K. Yan, C.Y. Wang, J. Janek, D. Schroder, G.X. Wang, Adv. Mater. 32 (2020) 1903891.
DOI URL |
[13] | C. Ma, T. Xu, Y. Wang, Energy Storage Mater. 25 (2020) 811-826. |
[14] |
Y.W. Zheng, Q.W. Pan, M. Clites, B.W. Byles, E. Pomerantseva, C.Y. Li, Adv. Energy Mater. 8 (2018) 1801885.
DOI URL |
[15] |
W. Ling, N. Fu, J.P. Yue, X.X. Zeng, Q. Ma, Q. Deng, Y. Xiao, L.J. Wan, Y.G. Guo, X.W. Wu, Adv. Energy Mater. 10 (2020) 1903966.
DOI URL |
[16] |
J.S. Park, G.D. Park, Y.C. Kang, J. Mater. Sci. Technol. 89 (2021) 24-35.
DOI URL |
[17] |
A.Y.S. Eng, V. Kumar, Y.W. Zhang, J.M. Luo, W.Y. Wang, Y.M. Sun, W.Y. Li, Z.W. Seh, Adv. Energy Mater. 11 (2021) 2003493.
DOI URL |
[18] |
J.L. Guo, S.Y. Zhao, Y.L. Shen, G.S. Shao, F.X. Zhang, ACS Sustain. Chem. Eng. 8 (2020) 7609-7616.
DOI URL |
[19] |
J.M. Xu, H.B. Tang, T.T. Xu, D. Wu, Z.F. Shi, Y.T. Tian, X.J. Li, Ionics 23 (2017) 3273-3280.
DOI URL |
[20] |
D. Wang, W. Zhang, W.T. Zheng, X.Q. Cui, T. Rojo, Q. Zhang, Adv. Sci. 4 (2017) 1600168.
DOI URL |
[21] |
D. Wang, C.C. Qin, X.L. Li, G.Q. Song, Y.M. Liu, M.Y. Cao, L. Huang, Y.P. Wu, iScience 23 (2020) 100781.
DOI URL |
[22] |
S. Wang, Y. Liu, K. Lu, W. Cai, Y. Jie, F. Huang, X. Li, R. Cao, S. Jiao, Energy Fuels 35 (2021) 4587-4595.
DOI URL |
[23] |
W.S. Xiong, Y. Xia, Y. Jiang, Y. Qi, W. Sun, D. He, Y. Liu, X.Z. Zhao, ACS Appl. Mater. Interfaces 10 (2018) 21254-21261.
DOI URL |
[24] |
B.Y. Wang, T.T. Xu, S.Z. Huang, D.Z. Kong, X.J. Li, Y. Wang, J. Mater. Chem. A 9 (2021) 6070-6088.
DOI URL |
[25] |
C. Chen, Y. Huang, Z.Y. Meng, M.W. Lu, Z.P. Xu, P.B. Liu, T.H. Li, J. Mater. Sci. Technol. 76 (2021) 11-19.
DOI |
[26] |
X. Li, J.T. Fu, Y.P. Sun, M. Sun, S.B. Cheng, K.J. Chen, X.G. Yang, Q. Lou, T.T. Xu, Y.Y. Shang, J.M. Xu, Q. Chen, C.X. Shan, Nanoscale 11 (2019) 13343-13353.
DOI URL |
[27] |
X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 27 (2017) 1605989.
DOI URL |
[28] |
J.M. Zheng, M.H. Engelhard, D.H. Mei, S.H. Jiao, B.J. Polzin, J.G. Zhang, W. Xu, Nat. Energy 2 (2017) 17012.
DOI URL |
[29] |
C. Yan, X.B. Cheng, C.Z. Zhao, J.Q. Huang, S.T. Yang, Q. Zhang, J. Power Sources 327 (2016) 212-220.
DOI URL |
[30] |
H.L. Dai, X.X. Gu, J. Dong, C. Wang, C. Lai, S.H. Sun, Nat. Commun. 11 (2020) 643.
DOI URL |
[31] |
H. Duan, M. Fan, W.P. Chen, J.Y. Li, P.F. Wang, W.P. Wang, J.L. Shi, Y.X. Yin, L.J. Wan, Y.G. Guo, Adv. Mater. 31 (2019) 1807789.
DOI URL |
[32] |
H.Y. Feng, C. Ma, K. Dai, G.C. Kuang, D.G Ivey, W.F. Wei, ChemElectroChem 6 (2019) 904-910.
DOI URL |
[33] |
B. Wang, T. Jiang, L. Hou, H. Wang, T. Xu, Z. Zhang, D. Kong, X. Li, Y. Wang, Solid State Ion. 368 (2021) 115711.
DOI URL |
[34] |
X.B. Cheng, C. Yan, X. Chen, C. Guan, J.Q. Huang, H.J. Peng, R. Zhang, S.T. Yang, Q. Zhang, Chem 2 (2017) 258-270.
DOI URL |
[35] |
N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li, C.J. Li, L.J. Wan, R. Wen, Y.G. Guo, Angew. Chem. Int. Ed. 57 (2018) 1505-1509.
DOI URL |
[36] |
Z.J. Ju, J.W. Nai, Y. Wang, T.F. Liu, J.H. Zheng, H.D. Yuan, O.W. Sheng, C.B. Jin, W.K. Zhang, Z. Jin, H. Tian, Y.J. Liu, X.Y. Tao, Nat. Commun. 11 (2020) 488.
DOI URL |
[37] |
D. Wang, C. Luan, W. Zhang, X.F. Liu, L.S. Sun, Q. Liang, T.T. Qin, Z.Z. Zhao, Y. Zhou, P. Wang, W.T. Zheng, Adv. Energy Mater. 8 (2018) 1800650.
DOI URL |
[38] |
Z.W. Seh, J. Sun, Y. Sun, Y. Cui, ACS Cent. Sci. 1 (2015) 449-455.
DOI URL |
[39] | V. Kumar, Y. Wang, A.Y.S. Eng, M.F. Ng, Z.W. Seh, Cell Rep. Phys. Sci. 1 (2020) 100044. |
[40] |
T. Le, Q. Liang, M. Chen, C. Yang, Z. Yu, J. Cheng, F. Kang, Y. Yang, Small 16 (2020) 2001992.
DOI URL |
[41] |
G. Yang, J. Chen, P. Xiao, P.O. Agboola, I. Shakir, Y. Xu, J. Mater. Chem. A 6 (2018) 9899-9905.
DOI URL |
[42] |
H. Lin, Z. Zhang, Y. Wang, X.L. Zhang, Z. Tie, Z. Jin, Adv. Funct. Mater. 31 (2021) 2102735.
DOI URL |
[43] |
D.Z. Kong, Y. Wang, S.Z. Huang, B. Zhang, Y.V. Lim, G.J. Sim, P.V.Y. Alvarado, Q. Ge, H.Y. Yang, ACS Nano 14 (2020) 9675-9686.
DOI URL |
[44] |
R.C. Lu, B.B. Zhang, Y.L. Cheng, K. Amin, C. Yang, Q.Y. Zhou, L.J. Mao, Z.X. Wei, J. Mater. Chem. A 9 (2021) 10393-10403.
DOI URL |
[45] | D.C. Lin, J. Zhao, J. Sun, H.B. Yao, Y.Y. Liu, K. Yan, Y. Cui, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 4613-4618. |
[46] | C. Bao, B. Wang, Y. Xie, R. Song, Y. Jiang, Y. Ning, F. Wang, T. Ruan, D. Wang, Y. Zhou, A.C.S. Sustain, Chem. Eng. 8 (2020) 5452-5463. |
[47] | T.S. Wang, Y. Liu, Y.X. Lu, Y.S. Hu, L.Z. Fan, Energy Storage Mater 15 (2018) 274-281. |
[48] |
Y. Ma, Y. Gu, Y. Yao, H. Jin, X. Zhao, X. Yuan, Y. Lian, P. Qi, R. Shah, Y. Peng, Z. Deng, J. Mater. Chem. A 7 (2019) 20926-20935.
DOI URL |
[49] |
W. Luo, Y. Zhang, S.M. Xu, J.Q. Dai, E. Hitz, Y.J. Li, C.P. Yang, C.J. Chen, B.Y. Liu, L.B. Hu, Nano Lett. 17 (2017) 3792-3797.
DOI URL |
[50] |
H. Ye, C.Y. Wang, T.T. Zuo, P.F. Wang, Y.X. Yin, Z.J. Zheng, P. Wang, J. Cheng, F.F. Cao, Y.G. Guo, Nano Energy 48 (2018) 369-376.
DOI URL |
[51] |
H.J. Yoon, N.R. Kim, H.J. Jin, Y.S. Yun, Adv. Energy Mater. 8 (2018) 1701261.
DOI URL |
[52] |
L. Shi, Z. Hu, Y. Hong, RSC Adv. 10 (2020) 20915-20920.
DOI URL |
[53] |
Z. Li, X. Li, L. Zhou, Z. Xiao, S. Zhou, X. Zhang, L. Li, L. Zhi, Nano Energy 49 (2018) 179-185.
DOI URL |
[54] | W. Zhu, W. Deng, F. Zhao, S. Liang, X. Zhou, Z. Liu, Energy Storage Mater. 21 (2019) 107-114. |
[55] |
J. Wu, P. Zou, M. Ihsan-Ul-Haq, N. Mubarak, A. Susca, B. Li, F. Ciucci, J.K. Kim, Small 16 (2020) 2003815.
DOI URL |
[56] |
Y. Nan, S. Li, Y. Shi, S. Yang, B. Li, Small 15 (2019) 1903520.
DOI URL |
[57] |
S.S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Adv. Funct. Mater. 27 (2017) 1700348.
DOI URL |
[58] |
J. Pu, J. Li, Z. Shen, C. Zhong, J. Liu, H. Ma, J. Zhu, H. Zhang, P.V. Braun, Adv. Funct. Mater. 28 (2018) 1804133.
DOI URL |
[59] |
J. Ren, R.P. Ren, Y.K. Lv, Chem. Eng. J. 353 (2018) 419-424.
DOI URL |
[60] |
F. Zhang, C. Yang, X. Gao, S. Chen, Y. Hu, H. Guan, Y. Ma, J. Zhang, H. Zhou, L. Qi, ACS Appl. Mater. Interfaces 9 (2017) 9620-9629.
DOI URL |
[61] |
H. Li, X. Wang, Z. Zhao, Z. Tian, D. Zhang, Y. Wu, ChemElectroChem 6 (2019) 404-412.
DOI URL |
[62] |
Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Nat. Mater. 10 (2011) 424-428.
DOI URL |
[63] |
J. Ren, R.P. Ren, Y.K. Lv, J. Alloy. Compd. 784 (2019) 697-703.
DOI URL |
[64] |
X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Small 7 (2011) 3163-3168.
DOI URL |
[65] |
J. Yan, G. Zhi, D. Kong, H. Wang, T. Xu, J. Zang, W. Shen, J. Xu, Y. Shi, S. Dai, X. Li, Y. Wang, J. Mater. Chem. A 8 (2020) 19843-19854.
DOI URL |
[66] |
H. Wang, T. Jiang, B. Wang, L. Zhang, D. Kong, T. Xu, J. Zang, Z. Zhang, X. Li, Y. Wang, J. Power Sources 507 (2021) 230294.
DOI URL |
[67] |
Y. Wang, Y.V. Lim, S.Z. Huang, M. Ding, D.Z. Kong, Y.Y. Pei, T.T. Xu, Y.M. Shi, X.J. Li, H.Y. Yang, Nanoscale 12 (2020) 4341-4351.
DOI PMID |
[68] |
H. Yang, L. Zhang, H. Wang, S. Huang, T. Xu, D. Kong, Z. Zhang, J. Zang, X. Li, Y. Wang, J. Colloid Interface Sci. 611 (2022) 317-326.
DOI URL |
[69] |
T. Yang, T. Qian, X. Shen, M. Wang, S. Liu, J. Zhong, C. Yan, F. Rosei, J. Mater. Chem. A 7 (2019) 14496-14503.
DOI URL |
[70] |
L.T. Wang, Z.F. Shi, Z.Z. Ma, D.W. Yang, F. Zhang, X.Z. Ji, M. Wang, X. Chen, G.R. Na, S. Chen, D. Wu, Y. Zhang, X.J. Li, L.J. Zhang, C.X. Shan, Nano Lett. 20 (2020) 3568-3576.
DOI URL |
[71] |
J.Y. Wang, X.H. Wang, S.W. Lee, Q. Zhang, ACS Appl. Mater. Interfaces 11 (2019) 40481-40489.
DOI URL |
[72] |
P. Pachfule, D. Shinde, M. Majumder, Q. Xu, Nat. Chem. 8 (2016) 718-724.
DOI PMID |
[73] |
Y. Shao, F. Xu, I. Marriam, W. Liu, Z. Gao, Y. Qiu, Appl. Surf. Sci. 465 (2019) 795-801.
DOI URL |
[74] |
A.I. Aria, B.J. Lyon, M. Gharib, Carbon 81 (2015) 376-387.
DOI URL |
[75] |
Z.Z. Ma, Z.F. Shi, C.C. Qin, M.H. Cui, D.W. Yang, X.J. Wang, L.T. Wang, X.Z. Ji, X. Chen, J.L. Sun, D. Wu, Y. Zhang, X.J. Li, L.J. Zhang, C.X. Shan, ACS Nano 14 (2020) 4475-4486.
DOI URL |
[76] |
Y. Wang, D.Z. Kong, W.H. Shi, B. Liu, G.J. Sim, Q. Ge, H.Y. Yang, Adv. Energy Mater. 6 (2016) 1601057.
DOI URL |
[77] |
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442 (2006) 282-286.
DOI URL |
[78] |
S.H. Hong, D.H. Jung, J.H. Kim, Y.H. Lee, S.J. Cho, S.H. Joo, H.W. Lee, K.S. Lee, S.Y. Lee, Adv. Funct. Mater. 30 (2020) 1908868.
DOI URL |
[79] |
W. Yang, W. Yang, L. Dong, G. Shao, G. Wang, X. Peng, Nano Energy 80 (2021) 105563.
DOI URL |
[80] |
J. Yun, B.K. Park, E.S. Won, S.H. Choi, H.C. Kang, J.H. Kim, M.S. Park, J.W. Lee, ACS Energy Lett. 5 (2020) 3108-3114.
DOI URL |
[81] | V. Kumar, A.Y.S. Eng, Y. Wang, D.-.T. Nguyen, M.-.F. Ng, Z.W. Seh, Energy Storage Mater. 29 (2020) 1-8. |
[82] |
L. Hou, T. Xu, R. Liu, H. Yuan, D. Kong, W. Shen, J. Zang, X. Li, Y. Wang, J. Am. Ceram. Soc. 104 (2020) 1526-1538.
DOI URL |
[83] |
Z. Zheng, X. Zeng, H. Ye, F. Cao, Z. Wang, ACS Appl. Mater. Interfaces 10 (2018) 30417-30425.
DOI URL |
[84] |
B. Liu, D. Lei, J. Wang, Q. Zhang, Y. Zhang, W. He, H. Zheng, B. Sa, Q. Xie, D.-.L. Peng, B. Qu, Nano Res. 13 (2020) 2136-2142.
DOI URL |
[85] |
X.Y. Cui, Y.J. Wang, H.D. Wu, X.D. Lin, S. Tang, P. Xu, H.G. Liao, M.S. Zheng, Q.F. Dong, Adv. Sci. 8 (2021) 2003178.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||