J. Mater. Sci. Technol. ›› 2022, Vol. 116: 130-150.DOI: 10.1016/j.jmst.2021.12.008
• Research Article • Previous Articles Next Articles
Jie Tanga, Mingcai Liua, Guowei Boa,b, Fulin Jianga,*(), Chunhui Luoc, Jie Tenga,*(
), Dingfa Fua, Hui Zhanga,*(
)
Received:
2021-11-19
Revised:
2021-12-24
Accepted:
2021-12-25
Published:
2022-01-29
Online:
2022-07-26
Contact:
Fulin Jiang,Jie Teng,Hui Zhang
About author:
zhanghui63@hnu.edu.cn (H. Zhang).Jie Tang, Mingcai Liu, Guowei Bo, Fulin Jiang, Chunhui Luo, Jie Teng, Dingfa Fu, Hui Zhang. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling[J]. J. Mater. Sci. Technol., 2022, 116: 130-150.
Alloys | Zn | Mg | Cu | Fe | Si | Al |
---|---|---|---|---|---|---|
6.25% alloy | 6.25 | 2.06 | 2.12 | 0.16 | 0.043 | Bal. |
7.93% alloy | 7.93 | 2.02 | 2.03 | 0.13 | 0.047 | Bal. |
10.11% alloy | 10.11 | 2.04 | 2.11 | 0.16 | 0.047 | Bal. |
Table 1. Main chemical compositions of the employed Al-Zn-Mg-Cu alloys (wt.%).
Alloys | Zn | Mg | Cu | Fe | Si | Al |
---|---|---|---|---|---|---|
6.25% alloy | 6.25 | 2.06 | 2.12 | 0.16 | 0.043 | Bal. |
7.93% alloy | 7.93 | 2.02 | 2.03 | 0.13 | 0.047 | Bal. |
10.11% alloy | 10.11 | 2.04 | 2.11 | 0.16 | 0.047 | Bal. |
Fig. 1. Schematic illustration of the heat treatment procedure and sketch of in-situ electrical resistivity measurement. (As seen in the sketch, the Al wires at both ends of the sample introduce a constant current I. By monitoring the variation of voltage U between the two Al wires on the inside sides, the resistance R for the sample could be obtained. Then the electrical resistivity would be recorded in-situ.).
Fig. 2. (a-c) The calculated equilibrium phase fractions for the studied Al-Zn-Mg-Cu alloys by Thermo-Calc software; (d, e) in-situ electrical resistivity and corresponding derivative evolutions and (f) micro-hardness variations during non-isothermal heat treatments.
Fig. 3. TEM micrographs with corresponding SAD patterns ([110]Al zone axis) of the Al-Zn-Mg-Cu alloys during non-isothermal heat treatments at: (a-c) 120 °C; (d-f) 160 °C. High-resolution SAD patterns in both [110]Al projections and [100]Al projections are shown in Fig. S1 in Supplementary Information.
Fig. 4. The in-situ electrical resistivity and corresponding derivative evolutions for the studied Al-Zn-Mg-Cu alloys at different isothermal artificial aging temperatures: (a) 80 °C; (b) 120 °C; (c) 160 °C; (d) 200 °C. The abbreviation of “SS” refers to the solid solution treated alloys.
Fig. 5. Micro-hardness evolutions of the studied Al-Zn-Mg-Cu alloys at different isothermal aging temperatures: (a) 80 °C; (b) 120 °C; (c) 160 °C; (d) 200 °C.
Fig. 6. TEM micrographs with corresponding SAD patterns of the studied Al-Zn-Mg-Cu alloys during isothermal artificial aging at 120 °C for different time: (a-c) 150 min; (d-f) 24 h. High-resolution SAD patterns in both [110]Al projections and [100]Al projections are shown in Fig. S2 in Supplementary Information.
Fig. 7. TEM micrographs with corresponding SAD patterns of the studied Al-Zn-Mg-Cu alloys during isothermal artificial aging at 160 °C and 200 °C for different time: (a-c) aged at 160 °C, 4 h for three studied alloys; (d) aged at 160 °C, 24 h for 7.93% alloy; (e) aged at 200 °C, 100 s for 7.93% alloy; (f) aged at 200 °C, 24 h for 7.93% alloy. High-resolution SAD patterns in both [110]Al projections and [100]Al projections are shown in Fig. S3 in Supplementary Information.
Fig. 9. STEM micrographs and corresponding EDS mappings for 6.25% alloy and 10.11% alloy aging at 120 °C for different holding time: (a-d) 6.25% alloy, 100 s; (e-h) 10.11% alloy, 100 s; (i-l) 6.25% alloy, 150 min; (m-p) 10.11% alloy, 150 min. The analysed elements are labelled in the lower left corner of EDS mappings. The statistical results of average element concentration (at.%) of matrix and precipitates are marked in the pictures respectively.
Fig. 10. (a-h) HAADF-STEM micrographs and corresponding fast Fourier transform (FFT) diffractograms of 6.25% alloy and 10.11% alloy aged at 120 °C for different time (The aging conditions are marked in the graph); (i) schematic atomic stacking model showing the evolution of plate-like precipitates.
Alloys | Aging conditions | Subsistent precipitates |
---|---|---|
6.25% alloy | 120 °C-24 h | GPII + η' |
Al-5.6Zn-2.5Mg-1.6Cu alloy (wt.%) [ | 120 °C-24 h | GPII + η' |
Al-6.08Zn-2.5Mg-1.93Cu alloy (wt.%) [ | 120 °C-24 h | GPII |
Al-6.22Zn-2.46Mg-2.13Cu-0.15Zr alloy (wt.%) [ | 120 °C-24 h | GPII |
Al-6.56Zn-2.25Mg-2.1Cu-0.12Zr alloy (wt.%) [ | 120 °C-24 h | η' |
7.93% alloy | 120 °C-24 h | GPII + η' |
Al-3.56Zn-2.36Mg-0.9Cu-0.04Zr alloy (at.%) [ | 120 °C-24 h | η' |
Al-7.76Zn-1.94Mg-2.35Cu-0.12Zr alloy (wt.%) [ | 120 °C-24 h | η' + η |
Al-7.8Zn-1.6Mg-1.8Cu-0.14Zr alloy (wt.%) [ | 120 °C-24 h | η' |
10.11% alloy | 120 °C-24 h | GPII + η' |
Al-9.78Zn-2.04Mg-1.76Cu-0.11Zr alloy (wt.%) [ | 120 °C-24 h | η' |
6.25% alloy | 160 °C-0 s | GPII + η' |
7.93% alloy | 160 °C-0 s | GPII + η' |
10.11% alloy | 160 °C-0 s | GPII + η' |
Table 2. Categories of the precipitates in the studied alloys under different aging conditions. The collected results from published works are also summarized [[17], [18], [19],29,30,38,58,59].
Alloys | Aging conditions | Subsistent precipitates |
---|---|---|
6.25% alloy | 120 °C-24 h | GPII + η' |
Al-5.6Zn-2.5Mg-1.6Cu alloy (wt.%) [ | 120 °C-24 h | GPII + η' |
Al-6.08Zn-2.5Mg-1.93Cu alloy (wt.%) [ | 120 °C-24 h | GPII |
Al-6.22Zn-2.46Mg-2.13Cu-0.15Zr alloy (wt.%) [ | 120 °C-24 h | GPII |
Al-6.56Zn-2.25Mg-2.1Cu-0.12Zr alloy (wt.%) [ | 120 °C-24 h | η' |
7.93% alloy | 120 °C-24 h | GPII + η' |
Al-3.56Zn-2.36Mg-0.9Cu-0.04Zr alloy (at.%) [ | 120 °C-24 h | η' |
Al-7.76Zn-1.94Mg-2.35Cu-0.12Zr alloy (wt.%) [ | 120 °C-24 h | η' + η |
Al-7.8Zn-1.6Mg-1.8Cu-0.14Zr alloy (wt.%) [ | 120 °C-24 h | η' |
10.11% alloy | 120 °C-24 h | GPII + η' |
Al-9.78Zn-2.04Mg-1.76Cu-0.11Zr alloy (wt.%) [ | 120 °C-24 h | η' |
6.25% alloy | 160 °C-0 s | GPII + η' |
7.93% alloy | 160 °C-0 s | GPII + η' |
10.11% alloy | 160 °C-0 s | GPII + η' |
Fig. 11. Growth rate contour map of solid solution concentration versus precipitates radius of the studied alloys at different aging temperatures: (a-d) 120 °C; (e-h) 160 °C. The represented alloys and growth controlling elements are marked in the image.
Precipitates | Shape | Habit plane | Composition | A | l | Vp | σs | αplate |
---|---|---|---|---|---|---|---|---|
GPII zone | Plate-like | {111}Al | MgZn2 | 1.72 | 1.5 nm | 2.1 × 10-5 m3/mol [ | 0.11 J/m2 | ≈0.45 |
η' | Plate-like | {111}Al | MgZn2 | > 3 | 1.5 nm | 0.2 J/m2 [ | ≈0.11 | |
η | Rod-like or Spherical | - | Mg33Zn42Al12Cu13 | - | - | 0.4 J/m2 [ | ≈0.05 |
Table 3. Physical meaning and values of different internal parameters for GPII zone, η' precipitate and η precipitate used in the integrated model.
Precipitates | Shape | Habit plane | Composition | A | l | Vp | σs | αplate |
---|---|---|---|---|---|---|---|---|
GPII zone | Plate-like | {111}Al | MgZn2 | 1.72 | 1.5 nm | 2.1 × 10-5 m3/mol [ | 0.11 J/m2 | ≈0.45 |
η' | Plate-like | {111}Al | MgZn2 | > 3 | 1.5 nm | 0.2 J/m2 [ | ≈0.11 | |
η | Rod-like or Spherical | - | Mg33Zn42Al12Cu13 | - | - | 0.4 J/m2 [ | ≈0.05 |
Alloys | 120 °C | 160 °C | 200 °C |
---|---|---|---|
6.25% alloy | 1.05 × 1024 | 6.27 × 1023 | 1.48 × 1022 |
7.93% alloy | 1.10 × 1024 | 6.67 × 1023 | 1.55 × 1022 |
10.11% alloy | 1.15 × 1024 | 6.91 × 1023 | 1.97 × 1022 |
Table 4. The quantitative density (N) of the precipitate nucleus formed at the aging temperatures of 120, 160 and 200 °C.
Alloys | 120 °C | 160 °C | 200 °C |
---|---|---|---|
6.25% alloy | 1.05 × 1024 | 6.27 × 1023 | 1.48 × 1022 |
7.93% alloy | 1.10 × 1024 | 6.67 × 1023 | 1.55 × 1022 |
10.11% alloy | 1.15 × 1024 | 6.91 × 1023 | 1.97 × 1022 |
Fig. 12. The modeling results of precipitation characteristics and Δρ of the studied Al-Zn-Mg-Cu alloys during the aging process at 120 °C: (a, b) the comparison between predicted Δρ and mean precipitate size evolutions with experimental results; (c) the calculated evolutions of solutes Zn, Mg concentration remaining in the matrix; (d-f) the simulation of precipitate size distribution based on experimental statistics; (g-i) the simulation of precipitate size distribution based on a designed stew distribution.
Fig. 13. The modeling precipitation characteristics and Δρ of the studied Al-Zn-Mg-Cu alloys during the aging process at 160 °C: (a, b) the comparison between the predicted Δρ and mean precipitate size evolutions with experimental results; (c) the calculated evolutions of solutes Zn, Mg concentration remaining in the matrix; (d-f) the simulation of precipitate size distribution based on experimental statistics; (g-i) the simulation of precipitate size distribution based on a designed stew distribution.
Fig. 14. The modeling precipitation characteristics and Δρ of the studied Al-Zn-Mg-Cu alloys during the aging process at 200 °C: (a, b) the comparison between the predicted mean precipitates radius and Δρ evolutions with experimental results; (c) the modeling evolutions of solutes Zn, Mg and Cu concentration remaining in the matrix; (d) the predicated precipitates density evolutions. The separate growth and coarsening periods for precipitation are marked in the figure.
Fig. 15. (a-c) The modelled contribution of solid solution atoms σs and precipitates σp on yield strength at the aging temperature of 120 °C, 160 °C and 200 °C, respectively; (d-f) comparison of experimental and predicted hardness in the studied alloys at 120 °C, 160 °C and 200 °C.
Fig. 16. (a) Summary of the present integrated model which couples microstructures simulation and performance simulation; plots of Δρ vs. microhardness of the studied alloys during artificial aging treatments: (b) experimental results, (c) modeling results.
[1] |
S.Y. Park, W.J. Kim, J. Mater. Sci. Technol. 32 (2016) 660-670.
DOI URL |
[2] |
W.F. Xu, Y.X. Luo, W. Zhang, M.W. Fu, J. Mater. Sci. Technol. 34 (2018) 173-184.
DOI URL |
[3] |
H. She, D. Shu, A.P. Dong, J. Wang, B.D. Sun, H.C. Lai, J. Mater. Sci. Technol. 35 (2019) 2570-2581.
DOI URL |
[4] |
A. Azarniya, A.K. Taheri, K.K. Taheri, J. Alloy. Compd. 781 (2019) 945-983.
DOI URL |
[5] |
X.C. Xu, D.X. Liu, X.H. Zhang, C.S. Liu, D. Liu, J. Mater. Sci. Technol. 40 (2020) 88-98.
DOI URL |
[6] |
H. Zhao, B. Gault, D. Ponge, D. Raabe, Scr. Mater. 188 (2020) 269-273.
DOI URL |
[7] |
Y.W. Ma, S.Z. Niu, H.H. Liu, Y.B. Li, N.S. Ma, J. Mater. Sci. Technol. 82 (2021) 80-95.
DOI URL |
[8] |
M.H. Zhang, C.B. Li, Y. Zhang, S.D. Liu, J.Y. Jiang, J.G. Tang, L.Y. Ye, X.M. Zhang, Mater. Charact. 172 (2021) 110861.
DOI URL |
[9] |
M.Y. Chen, X. Zheng, K.Z. He, S.D. Liu, Y. Zhang, Corros. Sci. 191 (2021) 109743.
DOI URL |
[10] |
Y.C. Lin, J.L. Zhang, M.S. Chen, J. Alloy. Compd. 684 (2016) 177-187.
DOI URL |
[11] |
X.S. Xu, J.X. Zheng, Z. Li, R.C. Luo, B. Chen, Mater. Sci. Eng. A 691 (2017) 60-70.
DOI URL |
[12] |
Y.C. Lin, Y.Q. Jiang, J.L. Zhang, X.M. Chen, Adv. Eng. Mater. 20 (2018) 1700583.
DOI URL |
[13] |
Y.C. Lin, J.L. Zhang, G. Liu, Y.J. Liang, Mater. Des. 83 (2015) 866-875.
DOI URL |
[14] |
F.H. Cao, J.X. Zheng, Y. Jiang, B. Chen, Y.R. Wang, T. Hu, Acta Mater. 164 (2019) 207-219.
DOI URL |
[15] |
C.H. Liu, Z.Z. Feng, P.P. Ma, Y.H. Zhou, G.H. Li, L.H. Zhan, J. Mater. Sci. Technol. 95 (2021) 88-94.
DOI URL |
[16] |
Y. Zou, X.D. Wu, S.B. Tang, Q.Q. Zhu, H. Song, M.X. Guo, L.F. Cao, J. Mater. Sci. Technol. 85 (2021) 106-117.
DOI URL |
[17] |
K. Wen, Y.Q. Fan, G.J. Wang, L.B. Jin, X.W. Li, Z.H. Li, Y.G. Zhang, B.Q. Xiong, Mater. Des. 101 (2016) 16-23.
DOI URL |
[18] |
Y. Zhang, D. Pelliccia, B. Milkereit, N. Kirby, M.J. Starink, P.A. Rometsch, Mater. Des. 142 (2018) 259-267.
DOI URL |
[19] |
D.M. Liu, B.Q. Xiong, F.G. Bian, Z.H. Li, X.W. Li, Y.G. Zhang, Q.S. Wang, G.L. Xie, F. Wang, H.W. Liu, Mater. Sci. Eng. A 639 (2015) 245-251.
DOI URL |
[20] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 248-260.
DOI URL |
[21] |
T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, B. Baroux, Acta Mater. 58 (2010) 4814-4826.
DOI URL |
[22] |
T. Engdahl, V. Hansen, P.J. Warren, K. Stiller, Mater. Sci. Eng. A 327 (2002) 59-64.
DOI URL |
[23] |
M.J. Styles, T.J. Bastow, M.A. Gibson, C.R. Hutchinson, Intermetallics 49 (2014) 40-51.
DOI URL |
[24] |
N.Q. Chinh, J. Lendvai, D.H. Ping, K. Hono, J. Alloy. Compd. 378 (2004) 52-60.
DOI URL |
[25] |
M.M. Sharma, M.F. Amateau, T.J. Eden, Mater. Sci. Eng. A 424 (2006) 87-96.
DOI URL |
[26] |
A.K. Mukhopadhyay, K.S. Prasad, Philos. Mag. Lett. 91 (2011) 214-222.
DOI URL |
[27] |
P.C. Bai, X.H. Hou, X.Y. Zhang, C.W. Zhao, Y.M. Xing, Mater. Sci. Eng. A 508 (2009) 23-27.
DOI URL |
[28] |
E. Schwarzenböck, E. Ollivier, A. Garner, A. Cassell, T. Hack, Z. Barrett, C. Engel, T.L. Burnett, N.J.H. Holroyd, J.D. Robson, P.B. Prangnell, Corros. Sci. 171 (2020) 108701.
DOI URL |
[29] |
N. Mahathaninwong, T. Plookphol, J. Wannasin, S. Wisutmethangoon, Mater. Sci. Eng. A 532 (2012) 91-99.
DOI URL |
[30] |
H. Zhao, F.D. Geuser, A.K.d. Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Acta Mater. 156 (2018) 318-329.
DOI URL |
[31] |
P.P. Ma, C.H. Liu, Q.Y. Chen, Q. Wang, L.H. Zhan, J.J. Li, J. Mater. Sci. Technol. 46 (2020) 107-113.
DOI URL |
[32] |
A. Lervik, E. Thronsen, J. Friis, C.D. Marioara, S. Wenner, A. Bendo, K. Matsuda, R. Holmestad, S.J. Andersen, Acta Mater. 205 (2021) 116574.
DOI URL |
[33] |
T.F. Chung, Y.L. Yang, B.M. Huang, Z.S. Shi, J.G. Lin, T. Ohmura, J.R. Yang, Acta Mater. 149 (2018) 377-387.
DOI URL |
[34] |
K. Ma, H.M. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62 (2014) 141-155.
DOI URL |
[35] |
L.K. Berg, J. Gjonnes, V. Hansen, X.Z. Li, M.K. Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, Acta Mater. 49 (2001) 3443-3451.
DOI URL |
[36] |
G. Sha, A. Cerezo, Acta Mater. 52 (2004) 4503-4516.
DOI URL |
[37] |
W.C. Yang, S.X. Ji, M.P. Wang, Z. Li, J. Alloy. Compd. 610 (2014) 623-629.
DOI URL |
[38] |
J.Z. Chen, L. Zhen, S.J. Yang, W.Z. Shao, S.L. Dai, Mater. Sci. Eng. A 500 (2009) 34-42.
DOI URL |
[39] |
J. Herrnring, B. Sundman, P. Staron, B. Klusemann, Acta Mater. 215 (2021) 117053.
DOI URL |
[40] |
N. Kamp, A. Sullivan, R. Tomasi, J.D. Robson, Acta Mater. 54 (2006) 2003-2014.
DOI URL |
[41] | R. Kampmann, R. Wagner, Decomposition of Alloys:the Early Stages, Else- vier Inc., 1984, pp. 91-103 https://www.sciencedirect.com/science/article/pii/B9780080316512500185. |
[42] |
A. Deschamps, Y. Brechet, Acta Mater. 47 (1999) 293-305.
DOI URL |
[43] |
J.C. Werenskiold, A. Deschamps, Y. Brechet, Mater. Sci. Eng. A 293 (2000) 267-274.
DOI URL |
[44] |
J. Tang, J.H. Wang, J. Teng, G. Wang, D.F. Fu, H. Zhang, F.L. Jiang, Vacuum 184 (2020) 109941.
DOI URL |
[45] |
J. Tang, H. Zhang, J. Teng, D.F. Fu, F.L. Jiang, J. Alloy. Compd. 806 (2019) 1081-1096.
DOI |
[46] |
L.Q. Tang, G.W. Bo, F.L. Jiang, S.W. Xu, J. Teng, D.F. Fu, H. Zhang, J. Mater. Sci. Technol. 75 (2021) 184-195.
DOI URL |
[47] |
C. Mondal, A.K. Mukhopadhyay, Mater. Sci. Eng. A 391 (2005) 367-376.
DOI URL |
[48] |
F.L. Jiang, H.S. Zurob, G.R. Purdy, H. Zhang, Mater. Charact. 117 (2016) 47-56.
DOI URL |
[49] |
S. Abis, G. Riontino, Mater. Lett. 5 (1987) 4 42-4 45.
DOI URL |
[50] |
F.L. Jiang, H. Zhang, J. Mater. Sci. 53 (2017) 2830-2843.
DOI URL |
[51] |
J.Z. Liu, J.H. Chen, D.W. Yuan, C.L. Wu, J. Zhu, Z.Y. Cheng, Mater. Charact. 99 (2015) 277-286.
DOI URL |
[52] |
A.M. Cassell, J.D. Robson, X. Zhou, T. Hashimoto, M. Besel, Mater. Charact. 163 (2020) 110232.
DOI URL |
[53] | Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, K.C. Chou, J. Mater. Sci. Tech- nol. 44 (2020) 171-190. |
[54] |
Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[55] |
Y.L. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[56] |
T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, K.C. Chou, J. Mater. Sci. Technol. 97 (2022) 147-155.
DOI URL |
[57] |
J.D. Robson, Acta Mater. 52 (2004) 4669-4676.
DOI URL |
[58] |
T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, E.J. Lavernia, Acta Mater. 61 (2013) 2163-2178.
DOI URL |
[59] |
Y.G. Liao, X.Q. Han, M.X. Zeng, M. Jin, Mater. Des. 66 (2015) 581-586.
DOI URL |
[60] |
J.T. Liu, Y.A. Zhang, Z.H. Li, B.Q. Xiong, J.S. Zhang, Trans. Nonferrous Met. Soc. China 24 (2014) 1481-1487.
DOI URL |
[61] |
M. Mukherjee, U. Prahl, W. Bleck, Acta Mater. 71 (2014) 234-254.
DOI URL |
[62] |
J. Tang, F.L. Jiang, C.H. Luo, G.W. Bo, K.Y. Chen, J. Teng, D.F. Fu, H. Zhang, Int. J. Plast. 134 (2020) 102809.
DOI URL |
[63] |
J. Xu, R.X. Li, Q. Li, Metall. Mater. Trans. A 52 (2021) 1077-1094.
DOI URL |
[64] |
Y. Li, B. Hu, B. Liu, A.M. Nie, Q.F. Gu, J.F. Wang, Q. Li, Acta Mater. 187 (2020) 51-65.
DOI URL |
[65] |
D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, F. Bourlier, Acta Mater. 62 (2014) 129-140.
DOI URL |
[66] |
F.L. Jiang, H.S. Zurob, G.R. Purdy, H. Zhang, Mater. Sci. Eng. A 648 (2015) 164-177.
DOI URL |
[67] |
I.N. Khan, M.J. Starink, J.L. Yan, Mater. Sci. Eng. A 472 (2008) 66-74.
DOI URL |
[68] |
J.D. Robson, Acta Mater. 52 (2004) 1409-1421.
DOI URL |
[69] |
O.R. Myhr, O. Grong, Acta Mater. 48 (2000) 1605-1615.
DOI URL |
[70] |
J.D. Robson, Mater. Sci. Technol. 20 (2004) 441-448.
DOI URL |
[71] |
T. Philippe, P.W. Voorhees, Acta Mater. 61 (2013) 4237-4244.
DOI URL |
[72] |
M.J. Starink, X.M. Li, Metall. Mater. Trans. A 34 (2003) 899-911.
DOI URL |
[73] |
P. Archambault, D. Godard, Scr. Mater. 42 (2000) 675-680.
DOI URL |
[74] |
B. Raeisinia, W.J. Poole, D.J. Lloyd, Mater. Sci. Eng. A 420 (2006) 245-249.
DOI URL |
[75] |
S. Hirosawa, T. Sato, J. Yokota, A. Kamio, Mater. Trans. JIM 39 (1998) 139-146.
DOI URL |
[76] |
F.L. Jiang, S. Takaki, T. Masumura, R. Uemori, H. Zhang, T. Tsuchiyama, Int. J. Plast. 129 (2020) 102700.
DOI URL |
[77] |
M. Tiryakio ˘glu, Mater. Sci. Eng. A 633 (2015) 17-19.
DOI URL |
[78] |
M.J. Starink, S.C. Wang, Acta Mater. 51 (2003) 5131-5150.
DOI URL |
[79] |
H. Maeng, Y. Choi, S. Lee, Met. Sci. Heat Treat. 61 (2019) 455-460.
DOI URL |
[80] |
V.S. Krasnikov, A.E. Mayer, V.V. Pogorelko, F.T. Latypov, A .A. Ebel, Int. J. Plast. 125 (2020) 169-190.
DOI URL |
[81] |
A.W. Zhu, E.A. Starke, Acta Mater. 47 (1999) 3263-3269.
DOI URL |
[82] |
J. Xu, Y. Li, B. Hu, Y. Jiang, Q. Li, J. Mater. Sci. 54 (2019) 14561-14576.
DOI |
[83] |
J. Xu, Y. Li, K. Ma, Y.N. Fu, E.Y. Guo, Z.N. Chen, Q.F. Gu, Y.X. Han, T.M. Wang, Q. Li, Scr. Mater. 187 (2020) 142-147.
DOI URL |
[84] |
M. Dellah, M. Bournane, K.A. Ragab, Y. Sadaoui, A.F. Sirenko, Mater. Des. 50 (2013) 606-612.
DOI URL |
[1] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[2] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[3] | Zheng Cao, Zhao Cheng, Wei Xu, Lei Lu. Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys [J]. J. Mater. Sci. Technol., 2022, 103(0): 67-72. |
[4] | Yu Liao, Junhua Bai, Fuwen Chen, Guanglong Xu, Yuwen Cui. Microstructural strengthening and toughening mechanisms in Fe-containing Ti-6Al-4V: A comparison between homogenization and aging treated states [J]. J. Mater. Sci. Technol., 2022, 99(0): 114-126. |
[5] | Tianyi Han, Yong Liu, Mingqing Liao, Danni Yang, Nan Qu, Zhonghong Lai, Jingchuan Zhu. Refined microstructure and enhanced mechanical properties of AlCrFe2Ni2 medium entropy alloy produced via laser remelting [J]. J. Mater. Sci. Technol., 2022, 99(0): 18-27. |
[6] | Wanting Sun, Bo Wu, Hui Fu, Xu-Sheng Yang, Xiaoguang Qiao, Mingyi Zheng, Yang He, Jian Lu, San-Qiang Shi. Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 99(0): 223-238. |
[7] | Yunwu Ma, Bingxin Yang, Shanqing Hu, He Shan, Peihao Geng, Yongbing Li, Ninshu Ma. Combined strengthening mechanism of solid-state bonding and mechanical interlocking in friction self-piercing riveted AA7075-T6 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2022, 105(0): 109-121. |
[8] | Seyedmohammad Tabaie, Farhad Rézaï-Aria, Bertrand C.D. Flipo, Mohammad Jahazi. Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730™: Evolution of strengthening phases [J]. J. Mater. Sci. Technol., 2022, 96(0): 248-261. |
[9] | Zhen Ma, Huarui Zhang, Hanwei Fu, Yanzhao Yang, Jianji Wang, Ming Du, Hu Zhang. Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study [J]. J. Mater. Sci. Technol., 2022, 100(0): 182-192. |
[10] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[11] | Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys [J]. J. Mater. Sci. Technol., 2022, 112(0): 11-23. |
[12] | Bang Xiao, Wenpeng Jia, Huiping Tang, Jian Wang, Lian Zhou. Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting [J]. J. Mater. Sci. Technol., 2022, 108(0): 54-63. |
[13] | Wang Yi, Guangchen Liu, Zhao Lu, Jianbao Gao, Lijun Zhang. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning [J]. J. Mater. Sci. Technol., 2022, 112(0): 277-290. |
[14] | Olga Sacco, Paola Franco, Iolanda De Marco, Vincenzo Vaiano, Emanuela Callone, Riccardo Ceccato, Francesco Parrino. Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues [J]. J. Mater. Sci. Technol., 2022, 112(0): 49-58. |
[15] | Shuying Chen, Weidong Li, Ling Wang, Tao Yuan, Yang Tong, Ko-Kai Tseng, Jien-Wei Yeh, Qingang Xiong, Zhenggang Wu, Fan Zhang, Tingkun Liu, Kun Li, Peter K. Liaw. Stress-controlled fatigue of HfNbTaTiZr high-entropy alloy and associated deformation and fracture mechanisms [J]. J. Mater. Sci. Technol., 2022, 114(0): 191-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||