J. Mater. Sci. Technol. ›› 2022, Vol. 116: 121-129.DOI: 10.1016/j.jmst.2021.10.051
Special Issue: Ceramics 2022
• Research Article • Previous Articles Next Articles
Huanrong Tiana, Jinjie Zhengb, Lintao Liua, Haitao Wua,*(), Hideo Kimuraa, Yizhong Lub,*(
), Zhenxing Yuec,*(
)
Received:
2021-09-24
Revised:
2021-11-27
Accepted:
2021-11-29
Published:
2022-01-29
Online:
2022-07-26
Contact:
Haitao Wu, Yizhong Lu, Zhenxing Yue
Huanrong Tian, Jinjie Zheng, Lintao Liu, Haitao Wu, Hideo Kimura, Yizhong Lu, Zhenxing Yue. Structure characteristics and microwave dielectric properties of Pr2(Zr1-xTix)3(MoO4)9 solid solution ceramic with a stable temperature coefficient[J]. J. Mater. Sci. Technol., 2022, 116: 121-129.
Fig. 1. Apparent density of the Pr2(Zr1-xTix)3(MoO4)9 ceramics sintered at different temperature; the sintering temperatures, corresponding to the maximum apparent density, as a function of x values are shown in the inset.
Fig. 2. The morphology of the Pr2(Zr1-xTix)3(MoO4)9 ceramics sintered at optimal temperature (a-j corresponding to 800 °C, 750 °C, 750 °C, 700 °C, 700 °C, 750 °C, 700 °C, 700 °C, 700 °C, 650 °C).
Fig. 3. XRD patterns of the Pr2(Zr1-xTix)3(MoO4)9 ceramics sintered at the optimal sintering temperatures (800 °C for x = 0.1, 750 °C for x = 0.2, 0.3, and 0.6, 700 °C for 0.4, 0.5, 0.7, 0.8, and 0.9, 650 °C for x = 1.0).
Fig. 4. The refinement patterns of the Pr2(Zr1-xTix)3(MoO4)9 ceramics sintered at optimal temperature (a-j corresponding to 800 °C, 750 °C, 750 °C, 700 °C, 700 °C, 750 °C, 700 °C, 700 °C, 700 °C, 650 °C).
x | Lattice parameter | Empty Cell | Empty Cell | Empty Cell | Reliability factors | ||
---|---|---|---|---|---|---|---|
a = b (Å) | c (Å) | α = β (°) | γ (°) | Vm (Å3) | Rp (%) | Rwp (%) | |
0.1 | 9.7904 | 58.6696 | 90 | 120 | 4870.22 | 7.14 | 9.14 |
0.2 | 9.7613 | 58.6646 | 90 | 120 | 4840.81 | 7.78 | 10.0 |
0.3 | 9.7421 | 58.6417 | 90 | 120 | 4819.92 | 8.97 | 11.5 |
0.4 | 9.6995 | 58.5572 | 90 | 120 | 4771.00 | 8.24 | 10.3 |
0.5 | 9.6952 | 58.4838 | 90 | 120 | 4760.85 | 8.13 | 10.2 |
0.6 | 9.6458 | 58.3466 | 90 | 120 | 4701.35 | 8.28 | 10.5 |
0.7 | 9.6098 | 58.1829 | 90 | 120 | 4653.26 | 7.69 | 9.69 |
0.8 | 9.5818 | 58.0186 | 90 | 120 | 4613.08 | 7.52 | 9.72 |
0.9 | 9.5487 | 57.8145 | 90 | 120 | 4565.14 | 8.98 | 11.6 |
1.0 | 9.5282 | 57.64019 | 90 | 120 | 4531.87 | 8.57 | 10.8 |
Table 1. The lattice parameters and reliability factors of the Pr2(Zr1-xTix)3(MoO4)9 ceramics sintered at the optimal sintering temperatures.
x | Lattice parameter | Empty Cell | Empty Cell | Empty Cell | Reliability factors | ||
---|---|---|---|---|---|---|---|
a = b (Å) | c (Å) | α = β (°) | γ (°) | Vm (Å3) | Rp (%) | Rwp (%) | |
0.1 | 9.7904 | 58.6696 | 90 | 120 | 4870.22 | 7.14 | 9.14 |
0.2 | 9.7613 | 58.6646 | 90 | 120 | 4840.81 | 7.78 | 10.0 |
0.3 | 9.7421 | 58.6417 | 90 | 120 | 4819.92 | 8.97 | 11.5 |
0.4 | 9.6995 | 58.5572 | 90 | 120 | 4771.00 | 8.24 | 10.3 |
0.5 | 9.6952 | 58.4838 | 90 | 120 | 4760.85 | 8.13 | 10.2 |
0.6 | 9.6458 | 58.3466 | 90 | 120 | 4701.35 | 8.28 | 10.5 |
0.7 | 9.6098 | 58.1829 | 90 | 120 | 4653.26 | 7.69 | 9.69 |
0.8 | 9.5818 | 58.0186 | 90 | 120 | 4613.08 | 7.52 | 9.72 |
0.9 | 9.5487 | 57.8145 | 90 | 120 | 4565.14 | 8.98 | 11.6 |
1.0 | 9.5282 | 57.64019 | 90 | 120 | 4531.87 | 8.57 | 10.8 |
Fig. 8. (a) Dielectric constants (εr) of the Pr2(Zr1-xTix)3(MoO4)9 ceramics sintered at various temperatures, (b) the variation of εr and α/Vm as the function of the x values.
Fig. 9. (a) The Quality factors (Q·f) of the Pr2(Zr1-xTix)3(MoO4)9 ceramics sintered at different temperature, (b) the Q·f values and lattice energy (UZr/Ti-O) as the function of the x values.
Fig. 10. (a) The temperature coefficient of resonant frequency (τf), (b) [Zr/TiO4] octahedral distortion (Δ), (c) B-site bond valence (VB), (d) Mo-O bond strength (SMo-O), and (e) Mo-O bond energy (EMo-O) of the Pr2(Zr1-xTix)3(MoO4)9 ceramics as the function of x values.
D3d(-3 m) | # | E | 2C3 | 3C2 | I | 2S6 | 3δd | Selection rules |
---|---|---|---|---|---|---|---|---|
A1g | Γ1+ | 1 | 1 | 1 | 1 | 1 | 1 | αxx+αyy, αzz |
A2g | Γ2+ | 1 | 1 | -1 | 1 | 1 | -1 | Rz |
Eg | Γ3+ | 2 | -1 | 0 | 2 | -1 | 0 | (Rx, Ry), (αxx-αyy, αxy), (αxz, αyz) |
A1u | Γ1- | 1 | 1 | 1 | -1 | -1 | -1 | - |
A2u | Γ2- | 1 | 1 | -1 | -1 | -1 | 1 | Tz |
Eu | Γ3- | 2 | -1 | 0 | -2 | 1 | 0 | (Tx, Ty) |
Table 2. The character table of irreducible representations for the Pr2(Zr1-xTix)3(MoO4)9 ceramics.
D3d(-3 m) | # | E | 2C3 | 3C2 | I | 2S6 | 3δd | Selection rules |
---|---|---|---|---|---|---|---|---|
A1g | Γ1+ | 1 | 1 | 1 | 1 | 1 | 1 | αxx+αyy, αzz |
A2g | Γ2+ | 1 | 1 | -1 | 1 | 1 | -1 | Rz |
Eg | Γ3+ | 2 | -1 | 0 | 2 | -1 | 0 | (Rx, Ry), (αxx-αyy, αxy), (αxz, αyz) |
A1u | Γ1- | 1 | 1 | 1 | -1 | -1 | -1 | - |
A2u | Γ2- | 1 | 1 | -1 | -1 | -1 | 1 | Tz |
Eu | Γ3- | 2 | -1 | 0 | -2 | 1 | 0 | (Tx, Ty) |
Atoms | Wyckoff positions | Symmetry | IR Active Modes | Raman Active Modes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1g | A1u | A2g | A2u | Eu | Eg | A1g | A1u | A2g | A2u | Eu | Eg | |||
Zr/Ti(1) | 6b | S6 | - | - | - | 1 | 2 | - | - | - | - | - | - | - |
Mo(1), O(1-6) | 36f | C1 | - | - | - | 3 | 6 | - | 3 | - | - | - | - | 6 |
Mo(2) | 18e | C2 | - | - | - | 2 | 3 | - | 1 | - | - | - | - | 3 |
Pr, Zr/Ti(2) | 12c | C3 | - | - | - | 1 | 2 | - | 1 | - | - | - | - | 2 |
Table 3. Raman and IR vibrational modes of the Pr2(Zr1-xTix)3(MoO4)9 ceramics.
Atoms | Wyckoff positions | Symmetry | IR Active Modes | Raman Active Modes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1g | A1u | A2g | A2u | Eu | Eg | A1g | A1u | A2g | A2u | Eu | Eg | |||
Zr/Ti(1) | 6b | S6 | - | - | - | 1 | 2 | - | - | - | - | - | - | - |
Mo(1), O(1-6) | 36f | C1 | - | - | - | 3 | 6 | - | 3 | - | - | - | - | 6 |
Mo(2) | 18e | C2 | - | - | - | 2 | 3 | - | 1 | - | - | - | - | 3 |
Pr, Zr/Ti(2) | 12c | C3 | - | - | - | 1 | 2 | - | 1 | - | - | - | - | 2 |
Fig. 11. (a) The Raman spectra of Pr2(Zr1-xTix)3(MoO4)9 ceramics sintered at the optimal sintering temperatures (800 °C for x = 0.1, 750 °C for x = 0.2, 0.3, and 0.6, 700 °C for 0.4, 0.5, 0.7, 0.8, and 0.9, 650 °C for x = 1.0), (b) the measured and fitted Raman spectra of the Pr2(Zr1-xTix)3(MoO4)9 (x = 0.1, 1.0) ceramics, (c) the variation of Raman shift and τf with x from 0.1 to 1.0.
Fig. 12. (a) Measured and fitted infrared reflection spectra, (b) the real parts of the calculated and measured complex permittivity, and (c) the imaginary parts of the calculated and measured complex permittivity for the Pr2Ti3(MoO4)9 ceramics.
ε∞ = 3.06 ε = 10.65 | ||||
---|---|---|---|---|
j | ωoj | ωpj | γj | Δεj |
1 | 158.63 | 266.55 | 77.06 | 2.82 |
2 | 195.26 | 192.75 | 7.719 | 0.97 |
3 | 229.64 | 71.04 | 7.72 | 0.10 |
4 | 242.17 | 111.76 | 17.53 | 0.21 |
5 | 267.18 | 181.72 | 16.53 | 0.46 |
6 | 296.63 | 277.76 | 24.23 | 0.88 |
7 | 321.63 | 101.67 | 15.68 | 0.10 |
8 | 344.40 | 79.21 | 6.68 | 0.05 |
9 | 365.99 | 100.69 | 8.06 | 0.08 |
10 | 407.25 | 52.62 | 10.18 | 0.02 |
11 | 444.51 | 386.24 | 58.46 | 0.76 |
12 | 639.64 | 311.61 | 23.72 | 0.24 |
13 | 680.50 | 205.14 | 25.36 | 0.09 |
14 | 710.68 | 485.66 | 23.11 | 0.47 |
15 | 748.36 | 131.41 | 23.60 | 0.03 |
16 | 791.42 | 218.72 | 22.00 | 0.08 |
17 | 881.30 | 397.98 | 17.88 | 0.20 |
18 | 900.47 | 64.64 | 5.68 | 0.01 |
19 | 958.98 | 183.80 | 9.62 | 0.04 |
Table 4. Phonon parameters obtained from the fitting of the infrared reflectivity spectra of the Pr2Ti3(MoO4)9 ceramics.
ε∞ = 3.06 ε = 10.65 | ||||
---|---|---|---|---|
j | ωoj | ωpj | γj | Δεj |
1 | 158.63 | 266.55 | 77.06 | 2.82 |
2 | 195.26 | 192.75 | 7.719 | 0.97 |
3 | 229.64 | 71.04 | 7.72 | 0.10 |
4 | 242.17 | 111.76 | 17.53 | 0.21 |
5 | 267.18 | 181.72 | 16.53 | 0.46 |
6 | 296.63 | 277.76 | 24.23 | 0.88 |
7 | 321.63 | 101.67 | 15.68 | 0.10 |
8 | 344.40 | 79.21 | 6.68 | 0.05 |
9 | 365.99 | 100.69 | 8.06 | 0.08 |
10 | 407.25 | 52.62 | 10.18 | 0.02 |
11 | 444.51 | 386.24 | 58.46 | 0.76 |
12 | 639.64 | 311.61 | 23.72 | 0.24 |
13 | 680.50 | 205.14 | 25.36 | 0.09 |
14 | 710.68 | 485.66 | 23.11 | 0.47 |
15 | 748.36 | 131.41 | 23.60 | 0.03 |
16 | 791.42 | 218.72 | 22.00 | 0.08 |
17 | 881.30 | 397.98 | 17.88 | 0.20 |
18 | 900.47 | 64.64 | 5.68 | 0.01 |
19 | 958.98 | 183.80 | 9.62 | 0.04 |
[1] |
M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53 (2008) 57-90.
DOI URL |
[2] |
J.M. Li, C.M. Zhang, H. Liu, T. Qiu, C.G. Fan, J. Adv. Ceram. 9 (2020) 558-566.
DOI URL |
[3] | D. Wang, S. Zhang, G. Wang, Y. Vardaxoglou, W. Whittow, D. Cadman, D. Zhou, K. Song, I.M. Reaney, Appl. Mater. Today 18 (2020) 100519. |
[4] |
Y. Li, B. Xu, S. Xia, P. Shi, J. Adv. Dielectr. 10 (2020) 2050027.
DOI URL |
[5] |
C.J. Pei, J.J. Tan, Y. Li, G.G. Yao, Y.M. Jia, Z.Y. Ren, P. Liu, H.W. Zhang, J. Adv. Ceram. 9 (2020) 588-594.
DOI URL |
[6] |
X.B. Ding, Y.J. Gu, Q. Li, B.H. Kim, Q.F. Wang, J.L. Huang, Ceram. Int. 46 (2020) 13225-13232.
DOI URL |
[7] |
H.C. Yang, S.R. Zhang, H.Y. Yang, Q.Y. Wen, Q. Yang, L. Gui, Q. Zhao, E.Z. Li, J. Adv. Ceram. 10 (2021) 885-932.
DOI URL |
[8] | H.H. Guo, M.S. Fu, D. Zhou, C. Du, P.J. Wang, L.X. Pang, W.F. Liu, A.S.B. Sombra, J.Z. Su, ACS Appl. Mater. Int. 31 (2021) 912-923. |
[9] |
C.Z. Yin, Z.Z. Yu, L.L. Shu, L.J. Liu, Y. Chen, C.C. Li, J. Adv. Ceram. 10 (2021) 108-119.
DOI URL |
[10] |
Z.Y. Tan, K.X. Song, H.B. Bafrooeia, B. Liu, J. Wu, J.M. Xu, H.X. Lin, D.W. Wang, Ceram. Int. 46 (2020) 15665-15669.
DOI URL |
[11] |
F.Y. Huang, H. Su, Y.X. Li, H.W. Zhang, X.L. Tang, J. Adv. Ceram. 9 (2020) 471-480.
DOI URL |
[12] |
C.Y. Cai, X.Q. Chen, H. Li, J. Xiao, C.W. Zhong, S.R. Zhang, Ceram. Int. 46 (2020) 27679-27685.
DOI URL |
[13] |
M.T. Sebastian, H. Wang, H.L. Jantunen, Curr. Opin. Solid State Mater. 20 (2016) 151-170.
DOI URL |
[14] |
J. Bao, J.L. Du, L.T. Liu, H.T. Wu, Y.Y. Zhou, Z.X. Yue, Ceram. Int. 48 (2022) 784-794.
DOI URL |
[15] |
R. Peng, Y.X. Li, H. Su, Y.C. Lu, Y.R. Yun, L. Shi, B. Liao, J. Mater. Res. Technol. 9 (2020) 4994-5006.
DOI URL |
[16] |
W.Q. Liu, R.Z. Zuo, Ceram. Int. 43 (2017) 17229-17232.
DOI URL |
[17] |
J.J. Zheng, C.F. Xing, Y.K. Yang, S.X. Li, H.T. Wu, Z.H. Wang, J. Alloy Compd. 826 (2020) 153893.
DOI URL |
[18] |
L. Shi, C. Liu, H.W. Zhang, J. Adv. Dielectr. 09 (2020) 1950049.
DOI URL |
[19] |
J.J. Zheng, Y.H. Liu, B.J. Tao, Q. Zhang, H.T. Wu, X.Y. Zhang, Ceram. Int. 47 (2021) 5624-5630.
DOI URL |
[20] |
Y.H. Zhang, J.J. Sun, N. Dai, Z.C. Wu, H.T. Wu, C.H. Yang, J. Eur. Ceram. Soc. 39 (2019) 1127-1131.
DOI |
[21] |
B.J. Tao, C.F. Xing, W.F. Wang, H.T. Wu, Y.Y. Zhou, Ceram. Int. 45 (2019) 24675-24683.
DOI |
[22] |
Y.H. Zhang, H.T. Wu, J. Am. Ceram. Soc. 102 (2019) 4092-4102.
DOI URL |
[23] |
X. Zhou, L.T. Liu, J.J. Sun, N.K. Zhang, H.Z. Sun, H.T. Wu, W.H. Tao, J. Adv. Ceram. 10 (2021) 778-789.
DOI URL |
[24] |
J.J. Zheng, Y.H. Liu, B.J. Tao, Q. Zhang, H.T. Wu, X.Y. Zhang, Ceram. Int. 47 (2021) 5624-5630.
DOI URL |
[25] |
T. Tsunookaa, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, J. Eur. Ceram. Soc. 23 (2003) 2573-2578.
DOI URL |
[26] |
A. Ullah, H.X. Liu, H. Hao, J. Iqbal, Z.H. Yao, M.H. Cao, J. Eur. Ceram. Soc. 37 (2017) 3045-3049.
DOI URL |
[27] |
S.V. Zubkov, J. Adv. Dielectr. 11 (2021) 2160016.
DOI URL |
[28] |
B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory 8 (1960) 402-410.
DOI URL |
[29] |
W.E. Courtney, IEEE Trans. Microw. Theory 18 (1970) 476-485.
DOI URL |
[30] |
N. Ichinose, T. Shimada, J. Eur. Ceram. Soc. 26 (2006) 1755-1759.
DOI URL |
[31] |
J.I. Yang, S. Nahm, C.H. Choi, H.J. Lee, H.M. Park, J. Am. Ceram. Soc. 85 (2002) 165-168.
DOI URL |
[32] |
H.C. Yang, S.R. Zhang, H.Y. Yang, Y. Yuan, E.Z. Li, Dalton Trans. 47 (2018) 15808-15815.
DOI URL |
[33] |
R.D. Shannon, J. Appl. Phys. 73 (1993) 348-366.
DOI URL |
[34] |
H.Y. Yang, S.R. Zhang, H.C. Yang, E.Z. Li, Inorg. Chem. Front. 7 (2020) 4711-4753.
DOI URL |
[35] |
G. Wang, D.N. Zhang, X. Huang, Y.H. Rao, Y. Yang, G.W. Gan, Y.M. Lai, F. Xu, J. Li, Y.L. Liao, C. Liu, L.C. Jin, V.G. Harris, H.W. Zhang, J. Am. Ceram. Soc. 103 (2019) 214-223.
DOI URL |
[36] |
X. Zhou, X.L. Ji, L.T. Liu, J.L. Du, H. Kimura, Y.Y. Zhou, Z.X. Yue, J.P. Wen, H.T. Wu, Ceram. Int. 48 (2022) 11056-11063.
DOI URL |
[37] |
G. Wang, D.N. Zhang, J. Li, G.W. Gan, Y.H. Rao, X. Huang, Y. Yang, L. Shi, Y.L. Liao, C. Liu, L.C. Jin, H.W. Zhang, J. Am. Ceram. Soc. 103 (2020) 4321-4332.
DOI URL |
[38] |
I.D. Brown, K.K. Wu, Acta Cryst. B 32 (1976) 1957-1959.
DOI URL |
[39] |
J.X. Bi, C.F. Xing, C.H. Yang, H.T. Wu, J. Eur. Ceram. Soc. 38 (2018) 3840-3846.
DOI URL |
[40] |
C. Feng, X. Zhou, B.J. Tao, H.T. Wu, S.F. Huang, J. Adv. Ceram. 11 (2022) 392-402.
DOI URL |
[41] | A.G. Cockbain, P.J. Harrop, Br. J. Appl. Phys. 1 (1968) 1109-1115. |
[42] |
P.J. Harrop, J. Mater. Sci. 4 (1969) 370-374.
DOI URL |
[43] |
E.R. Kipkoech, F. Azough, R. Freer, J. Appl. Phys. 97 (2005) 064103.
DOI URL |
[44] |
L.T. Nong, X.F. Cao, C.C. Li, L.J. Liu, L. Fang, J. Khaliq, J. Eur. Ceram. Soc. 41 (2021) 7683-7688.
DOI URL |
[45] |
J. Dhanya, E.K. Suresh, R. Naveenraj, R. Ratheesh, J. Electron. Mater. 48 (2019) 4040-4049.
DOI URL |
[46] |
E.J. Liang, H.L. Huo, J.P. Wang, M.J. Chao, J. Phys. Chem. C 112 (2008) 6577-6581.
DOI URL |
[47] |
E.J. Liang, Y. Liang, Y. Zhao, J. Liu, Y.J. Jiang, J. Phys. Chem. A 112 (2008) 12582-12587.
DOI PMID |
[48] |
J. Dhanya, P.V. Sarika, R. Naveenraj, E.K. Suresh, R. Ratheesh, Int. J. Appl. Ceram. Tec. 16 (2019) 1150-1158.
DOI URL |
[49] |
H.C. Yang, S.R. Zhang, Y. Yuan, E.Z. Li, J. Am. Ceram. Soc. 103 (2019) 1131-1139.
DOI URL |
[50] |
L. Shi, C. Liu, H.W. Zhang, R. Peng, G. Wang, X.L. Shi, X.Y. Wang, W.W. Wang, Mater. Chem. Phys. 250 (2020) 122954.
DOI URL |
[51] |
V.V. Atuchin, V.G. Grossman, S.V. Adichtchev, N.V. Surovtsev, T.A. Gavrilova, B.G. Bazarov, Opt. Mater. 34 (2012) 812-816.
DOI URL |
[52] |
R.F. Shen, B.H. Yuan, S.L. Li, X.H. Ge, J. Guo, E.J. Liang, Optik 165 (2018) 1-6.
DOI URL |
[53] |
H. Li, X.Q. Chen, Q.Y. Xiang, B. Tang, J.W. Lu, Y.H. Zou, S.R. Zhang, Ceram. Int. 45 (2019) 14160-14166.
DOI URL |
[54] |
K. Wakino, D.A. Sagala, H. Tamura, J. Am. Ceram. Soc. 69 (1986) 34-37.
DOI URL |
[55] |
B. Liu, Y.H. Huang, H.B. Bafrooei, K.X. Song, L. Li, X.M. Chen, J. Eur. Ceram. Soc. 39 (2019) 4794-4799.
DOI URL |
[56] | L. Yi, X.Q. Liu, X.M. Chen, Int. J. Appl. Ceram. Technol. 12 (2015) E33-E40. |
[57] |
Y. Tang, M.Y. Xu, L. Duan, J.Q. Chen, C.C. Li, H.C. Xiang, L. Fang, J. Eur. Ceram. Soc. 39 (2019) 2354-2359.
DOI URL |
[58] |
M.M. Mao, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 94 (2011) 2506-2511.
DOI URL |
[59] |
Y. Tang, M.Y. Xu, L. Duan, J.Q. Chen, C.C. Li, H.C. Xiang, L. Fang, J. Eur. Ceram. Soc. 39 (2019) 2354-2359.
DOI URL |
[1] | Xixi Niu, Haoqiang Zhang, Zhiliang Pei, Nanlin Shi, Chao Sun, Jun Gong. Measurement of interfacial residual stress in SiC fiber reinforced Ni-Cr-Al alloy composites by Raman spectroscopy [J]. J. Mater. Sci. Technol., 2019, 35(1): 88-93. |
[2] | Yue Yang, Hua Wu. Effects of Current Density on Microstructure of Titania Coatings by Micro-arc Oxidation [J]. J Mater Sci Technol, 2012, 28(4): 321-324. |
[3] | Baohong JIN, Nanlin SHI. Analysis of Microstructure of Silicon Carbide Fiber by Raman Spectroscopy [J]. J Mater Sci Technol, 2008, 24(02): 261-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||