J. Mater. Sci. Technol. ›› 2022, Vol. 113: 105-116.DOI: 10.1016/j.jmst.2021.10.024
• Research article • Previous Articles Next Articles
Xindong Qina, Jiliang Xua,b, Zhengwang Zhub, Zhengkun Lib,*(), Dawei Fanga,*(
), Huameng Fub, Shiming Zhangc, Haifeng Zhangb
Received:
2021-07-15
Revised:
2021-10-03
Accepted:
2021-10-10
Published:
2021-12-30
Online:
2022-06-24
Contact:
Zhengkun Li,Dawei Fang
About author:
davidfine@163.com (D. Fang).Xindong Qin, Jiliang Xu, Zhengwang Zhu, Zhengkun Li, Dawei Fang, Huameng Fu, Shiming Zhang, Haifeng Zhang. Co78Si8B14 metallic glass: A highly efficient and ultra-sustainable Fenton-like catalyst in degrading wastewater under universal pH conditions[J]. J. Mater. Sci. Technol., 2022, 113: 105-116.
Fig. 1. (a) UV-vis spectra of AO II solution treated with Co78Si8B14 MG ribbons (pH = 10, H2O2 concentration: 2.5 mmol/L, Co78Si8B14 MG dosage: 4 g/L, temperature: 298 K and AO II concentration: 100 mg/L). (b) Effect of pH on AO II degradation using the as-received Co78Si8B14 MG ribbons. (c) Degradation process of AO II using Fe78Si8B14 MG ribbons at pH 4 and pH 10, respectively (H2O2 concentration: 2.5 mmol/L, Fe78Si8B14 MG dosage: 4 g/L, temperature: 298 K and AO II concentration: 100 mg/L). (d) Degradation efficiency and degradation rate of AO II using Co78Si8B14 and Fe78Si8B14 MG ribbons, respectively.
Fig. 2. Comparison of applicable range of pH. Degradation efficiency versus solution pH for the Co-based MGs in this work and the extensively studied Fe-based MG catalysts.
Fig. 3. (a) Effect of temperature on AO II degradation using Co78Si8B14 MG ribbons, the inset shows the plot of lnk versus 1000/RT, the solid line is the fitting using the Arrhenius equation to yield Ea. (b) UV-vis spectra of Rh B solution treated with Co78Si8B14 MG ribbons (pH = 4, H2O2 concentration: 2.5 mmol/L, Co78Si8B14 dosage: 4 g/L, temperature: 298 K and Rh B concentration: 50 mg/L). (c) Effect of pH on Rh B degradation using Co78Si8B14 MG ribbons. (d) TOC removals of AO II and Rh B by using Co78Si8B14 MG ribbons under acidic and alkaline conditions.
Fig. 9. SEM images of Co78Si8B14 MGs after the (a) 1st, (b) 5th (with inset image of the enlarged view of the pits highlighted by a red square), (c) 10th, (d) 15th, (e) 20th, (f) 30th, (g) 40th, (h) 50th and (i) 60th cycles with pH = 10.
Fig. 12. Effect of TBA concentration on AO II degradation with (a) pH = 4 and (b) pH = 10. Effect of (c) catalyst dosage and (d) H2O2 concentration on AO II degradation using as-received Co78Si8B14 MG ribbons. Effect of Co2+ and Co3+ on AO II degradation with (e) pH = 4 (Co2+ or Co3+ concentration: 16.9 mg/L, temperature: 298 K and AO II concentration: 100 mg/L) and (f) pH = 10 (Co2+ or Co3+ concentration: 6.1 mg/L, temperature: 298 K and AO II concentration: 100 mg/L).
[1] |
S.X. Liang, Z. Jia, Y.J. Liu, W.C. Zhang, W.M. Wang, J. Lu, L.C. Zhang, Adv. Mater. 30 (2018) 1802764.
DOI URL |
[2] |
Z. Jia, Q. Wang, L.G. Sun, Q. Wang, L.C. Zhang, G. Wu, J.H. Luan, Z.B. Jiao, A. D. Wang, S.X. Liang, M. Gu, J. Lu, Adv. Funct. Mater. 29 (2019) 1807857.
DOI URL |
[3] |
Z. Qiu, Z. Li, H. Fu, H. Zhang, Z. Zhu, A. Wang, H. Li, L. Zhang, H. Zhang, J. Mater. Sci. Technol. 46 (2020) 33-43.
DOI URL |
[4] |
M.Z. Ibrahim, A.A.D. Sarhan, T.Y. Kuo, F. Yusof, M. Hamdi, T.M. Lee, Surf. Coat. Technol. 392 (2020) 125755.
DOI URL |
[5] |
Q.Y. Zhang, S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, L.C. Zhang, J. Mater. Sci. Technol. 61 (2021) 159-168.
DOI URL |
[6] |
G. Doubek, R.C. Sekol, J. Li, W.H. Ryu, F.S. Gittleson, S. Nejati, E. Moy, C. Reid, M. Carmo, M. Linardi, P. Bordeenithikasem, E. Kinser, Y. Liu, X. Tong, C.O. Osuji, J. Schroers, S. Mukherjee, A.D. Taylor, Adv. Mater. 28 (2016) 1940-1949.
DOI |
[7] |
B. Zhao, Z. Zhu, X.D. Qin, Z. Li, H. Zhang, J. Mater. Sci. Technol. 46 (2020) 88-97.
DOI URL |
[8] |
S. Mukherjee, R.C. Sekol, M. Carmo, E.I. Altman, A.D. Taylor, J. Schroers, Adv. Funct. Mater. 23 (2013) 2708-2713.
DOI URL |
[9] |
L.C. Zhang, Z. Jia, F.C. Lyu, S.X. Liang, J. Lu, Prog. Mater. Sci. 105 (2019) 100576.
DOI URL |
[10] |
Z. Jia, X.G. Duan, P. Qin, W.C. Zhang, W.M. Wang, C. Yang, H.Q. Sun, S.B. Wang, L. C. Zhang, Adv. Funct. Mater. 27 (2017) 1702258.
DOI URL |
[11] |
S. Xie, Y. Xie, J.J. Kruzic, K. Gu, H. Yang, Y. Deng, X. Zeng, ChemCatChem 12 (2020) 750-761.
DOI URL |
[12] |
Z. Deng, X.H. Zhang, K.C. Chan, L. Liu, T. Li, Chemosphere 174 (2017) 76-81.
DOI PMID |
[13] |
X. Qin, Z. Li, Z. Zhu, H. Fu, H. Li, A. Wang, H. Zhang, H. Zhang, J. Mater. Sci. Technol. 33 (2017) 1147-1152.
DOI URL |
[14] |
C.Q. Zhang, Z.W. Zhu, H.F. Zhang, Z.Q. Hu, J. Environ. Sci. 24 (2012) 1021-1026.
DOI URL |
[15] |
J.Q. Wang, Y.H. Liu, M.W. Chen, G.Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Adv. Funct. Mater. 22 (2012) 2567-2570.
DOI URL |
[16] | S.X. Liang, W. Zhang, L. Zhang, W. Wang, L.C. Zhang, Sustain. Mater. Technol. 22 (2019) e00126. |
[17] |
X. Qin, Z. Li, Z. Zhu, D. Fang, H. Zhang, J. Phys. Chem. Solids 133 (2019) 85-91.
DOI URL |
[18] |
S.X. Liang, S. Salamon, S. Zerebecki, L.C. Zhang, Z. Jia, H. Wende, S. Reichen-berger, S. Barcikowski, Scr. Mater. 203 (2021) 114094.
DOI URL |
[19] | S.X. Liang, X. Wang, W. Zhang, Y.J. Liu, W. Wang, L.C. Zhang, Appl. Mater. Today 19 (2020) 100543. |
[20] |
P. Liu, J.L. Zhang, M.Q. Zha, C.H. Shek, ACS Appl. Mater. Interfaces 6 (2014) 5500-5505.
DOI URL |
[21] |
B. Lin, X.F. Bian, P. Wang, G.P. Luo, Mater. Sci. Eng. B 177 (2012) 92-95.
DOI URL |
[22] |
C.Q. Zhang, H.F. Zhang, M.Q. Lv, Z.Q. Hu, J. Non Cryst. Solids 356 (2010) 1703-1706.
DOI URL |
[23] |
F. Miao, Q. Wang, Q. Zeng, L. Hou, T. Liang, Z. Cui, B. Shen, J. Mater. Sci. Technol. 38 (2020) 107-118.
DOI |
[24] |
J. Yang, X. Bian, Y. Bai, X. Lv, P. Wang, J. Non Cryst. Solids 358 (2012) 2571-2574.
DOI URL |
[25] |
X.D. Qin, Z.K. Li, Z.W. Zhu, H.M. Fu, H. Li, A.M. Wang, H.W. Zhang, H.F. Zhang, J. Mater. Sci. Technol. 34 (2018) 2290-2296.
DOI URL |
[26] |
S. Das, S. Garrison, S. Mukherjee, Adv. Eng. Mater. 18 (2016) 214-218.
DOI URL |
[27] |
M. Ramya, M. Karthika, R. Selvakumar, B. Raj, K.R. Ravi, J. Alloy. Compd. 696 (2017) 185-192.
DOI URL |
[28] |
B. Zhao, H. Li, Z. Li, S. Ge, X. Qin, S. Zhang, A. Wang, H. Zhang, Z. Zhu, J. Mater. Sci. Technol. 95 (2021) 158-166.
DOI URL |
[29] |
X.K. Luo, R. Li, J.Z. Zong, Y. Zhang, H.F. Li, T. Zhang, Appl. Surf. Sci. 305 (2014) 314-320.
DOI URL |
[30] |
N. Wang, Y. Pan, S.K. Wu, E.M. Zhang, W.J. Dai, Appl. Surf. Sci. 428 (2018) 328-337.
DOI URL |
[31] | B. Zhao, H. Li, X. Qin, Z. Li, S. Zhang, A. Wang, H. Zhang, Z. Zhu, Powder Tech-nol. 389 (2021) 11-20. |
[32] |
X.D. Qin, Z.W. Zhu, G. Liu, H.M. Fu, H.W. Zhang, A.M. Wang, H. Li, H.F. Zhang, Sci. Rep. 5 (2015) 18226.
DOI PMID |
[33] |
Z.K. Li, X.D. Qin, Z.W. Zhu, S.J. Zheng, H.L. Li, H.M. Fu, H.F. Zhang, J. Mater. Chem. A 8 (2020) 10855-10864.
DOI URL |
[34] |
P. Wang, J.Q. Wang, H. Li, H. Yang, J. Huo, J. Wang, C. Chang, X. Wang, R.W. Li, G. Wang, J. Alloy. Compd. 701 (2017) 759-767.
DOI URL |
[35] |
Q.Q. Wang, M.X. Chen, P.H. Lin, Z.Q. Cui, C.L. Chu, B.L. Shen, J. Mater. Chem. A 6 (2018) 10686-10699.
DOI URL |
[36] |
Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, Appl. Catal. B 204 (2017) 537-547.
DOI URL |
[37] |
L. Hou, Q. Wang, X. Fan, F. Miao, W. Yang, B. Shen, New J. Chem. 43 (2019) 6126-6135.
DOI URL |
[38] |
Z. Jia, W.C. Zhang, W.M. Wang, D. Habibi, L.C. Zhang, Appl. Catal. B 192 (2016) 46-56.
DOI URL |
[39] |
X.F. Wang, Y. Pan, Z.R. Zhu, J.L. Wu, Chemosphere 117 (2014) 638-643.
DOI URL |
[40] |
Q. Wang, L. Yun, M. Chen, D. Xu, Z. Cui, Q. Zeng, P. Lin, C. Chu, B. Shen, ACS Appl. Nano Mater. 2 (2019) 214-227.
DOI URL |
[41] |
S.X. Liang, Q. Zhang, Z. Jia, W. Zhang, W. Wang, L.C. Zhang, J. Colloid Interface Sci. 581 (2021) 860-873.
DOI URL |
[42] |
W. Yang, Q. Wang, W. Li, L. Xue, H. Liu, J. Zhou, J. Mo, B. Shen, Mater. Des. 161 (2019) 136-146.
DOI URL |
[43] |
Q. Chen, Z. Yan, H. Zhang, L.C. Zhang, H. Ma, W. Wang, W. Wang, Materials 13 (2020) 3694.
DOI URL |
[44] |
Q. Chen, Z. Yan, L. Guo, H. Zhang, L. Zhang, K. Kim, X. Li, W. Wang, J. Alloy. Compd. 831 (2020) 154817.
DOI URL |
[45] |
J.X. Chen, L.Z. Zhu, Catal. Today 126 (2007) 463-470.
DOI URL |
[46] |
Y. Tang, Y. Shao, N. Chen, K.F. Yao, RSC Adv. 5 (2015) 6215-6221.
DOI URL |
[47] |
C. Marinescu, M. Ben Ali, A. Hamdi, Y. Cherifi, A. Barras, Y. Coffinier, S. So-macescu, V. Raditoiu, S. Szunerits, R. Boukherroub, Chem. Eng. J. 336 (2018) 465-475.
DOI URL |
[48] |
Y. Gao, H. Gan, G. Zhang, Y. Guo, Chem. Eng. J. 217 (2013) 221-230.
DOI URL |
[49] |
R.C.C. Costa, M.F.F. Lelis, L.C.A. Oliveira, J.D. Fabris, J.D. Ardisson, R. Rios, C. N. Silva, R.M. Lago, J. Hazard. Mater. 129 (2006) 171-178.
DOI URL |
[50] |
G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 38 (2004) 3705-3712.
PMID |
[51] | H.W. Sun, G.H. Xie, D. He, L.Z. Zhang, Appl. Catal. B 267 (2020) 10. |
[52] | J. Dong, L. Song, J. Yin, W. He, Y. Wu, N. Gu, Y. Zhang, ACS Appl. Mater. Inter- faces 6 (2014) 1959-1970. |
[53] |
F. Miao, Q. Wang, L.C. Zhang, B. Shen, Appl. Surf. Sci. 540 (2021) 148401.
DOI URL |
[1] | Siyi Di, Qianqian Wang, Yiyuan Yang, Tao Liang, Jing Zhou, Lin Su, Kuibo Yin, Qiaoshi Zeng, Litao Sun, Baolong Shen. Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1 bulk metallic glass upon cryogenic cycling treatment [J]. J. Mater. Sci. Technol., 2022, 97(0): 20-28. |
[2] | Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 147-156. |
[3] | Hae Jin Park, Hee Jin Lee, Tae Kyung Kim, Sung Hwan Hong, Wei-Min Wang, Taek Jib Choi, Ki Buem Kim. Formation of photo-reactive heterostructure from a multicomponent amorphous alloy with atomically random distribution [J]. J. Mater. Sci. Technol., 2022, 109(0): 245-253. |
[4] | Xuelian Wu, Si Lan, Xiyang Li, Ming Yang, Zhenduo Wu, Xiaoya Wei, Haiyan He, Muhammad Naeem, Jie Zhou, Zhaoping Lu, Elliot Paul Gilbert, Dong Ma, Xun-Li Wang. Continuous chemical redistribution following amorphous-to-crystalline structural ordering in a Zr-Cu-Al bulk metallic glass [J]. J. Mater. Sci. Technol., 2022, 101(0): 285-293. |
[5] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
[6] | Xin Li, Guangcun Shan, C.H. Shek. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability [J]. J. Mater. Sci. Technol., 2022, 103(0): 113-120. |
[7] | Hongbo Zhou, Vitaly Khonik, Gerhard Wilde. On the shear modulus and thermal effects during structural relaxation of a model metallic glass: Correlation and thermal decoupling [J]. J. Mater. Sci. Technol., 2022, 103(0): 144-151. |
[8] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[9] | Yuhui Zhu, Weizhen Wang, Yuanyuan Song, Shiming Zhang, Hong Li, Aimin Wang, Haifeng Zhang, Zhengwang Zhu. Atomic-scale Nb heterogeneity induced icosahedral short-range ordering in metallic glasses [J]. J. Mater. Sci. Technol., 2022, 108(0): 73-81. |
[10] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
[11] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[12] | Langting Zhang, Yajuan Duan, Eloi Pineda, Hidemi Kato, Jean-Marc Pelletier, Jichao Qiao. Effect of physical aging and cyclic loading on power-law creep of high-entropy metallic glass [J]. J. Mater. Sci. Technol., 2022, 115(0): 1-9. |
[13] | Devashish Rajpoot, R. Lakshmi Narayan, Long Zhang, Punit Kumar, Haifeng Zhang, Parag Tandaiya, Upadrasta Ramamurty. Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite [J]. J. Mater. Sci. Technol., 2022, 106(0): 225-235. |
[14] | Qijing Sun, David M Miskovic, Michael Ferry. Probing the formation of ultrastable metallic glass from structural heterogeneity [J]. J. Mater. Sci. Technol., 2022, 104(0): 214-223. |
[15] | Z.R. Xu, J.C. Qiao, J. Wang, E. Pineda, D. Crespo. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep [J]. J. Mater. Sci. Technol., 2022, 99(0): 39-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||