J. Mater. Sci. Technol. ›› 2022, Vol. 113: 117-127.DOI: 10.1016/j.jmst.2021.10.023
• Research article • Previous Articles Next Articles
Yu Lua,*(), Richard Turnera, Jeffery Brooksa, Hector Basoaltob
Received:
2021-09-02
Revised:
2021-09-30
Accepted:
2021-10-06
Published:
2022-01-02
Online:
2022-06-24
Contact:
Yu Lu
About author:
*Dr Yu Lu, School of Metallurgy and Materials, University of Birmingham, United Kingdom E-mail addresses: y.lu.2@bham.ac.uk, liviabham@hotmail.com (Y. Lu).Yu Lu, Richard Turner, Jeffery Brooks, Hector Basoalto. A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy[J]. J. Mater. Sci. Technol., 2022, 113: 117-127.
Sample No. | Plate thickness (mm) | EB power (kW) | Travel speed (mm/s) | Zuev penetration HZ (mm) | Hashimoto penetration HH (mm) | Lopatko penetration HL (mm) |
---|---|---|---|---|---|---|
1 | 1.0 | 0.56 | 25 | 1.15 | 2.16 | 1.28 |
2 | 4.0 | 3.10 | 25 | 3.18 | 9.17 | 4.84 |
3 | 5.0 | 3.10 | 25 | 2.73 | 9.17 | 4.84 |
Table 1. Experimental matrix and analytical penetration depth predictions for the EB welds.
Sample No. | Plate thickness (mm) | EB power (kW) | Travel speed (mm/s) | Zuev penetration HZ (mm) | Hashimoto penetration HH (mm) | Lopatko penetration HL (mm) |
---|---|---|---|---|---|---|
1 | 1.0 | 0.56 | 25 | 1.15 | 2.16 | 1.28 |
2 | 4.0 | 3.10 | 25 | 3.18 | 9.17 | 4.84 |
3 | 5.0 | 3.10 | 25 | 2.73 | 9.17 | 4.84 |
Sample thickness | Crown width | Weld width | Toe width | HAZ | Weld depth | Grain size in FZ | |
---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (µm) | |
Steady state | 1 | 1.01 | 0.62 | 0.67 | 0.13 | 0.98 | 197 |
4 | 4.25 | 2.64 | - | 0.37 | 4.02 | 170 | |
5 | 4.56 | 2.71 | - | 0.38 | 4.47 | 233 | |
Non-steady state | 1 | 0.89 | 0.81 | 0.60 | 0.16 | 0.72 | 70 |
4 | 4.53 | 2.92 | - | 0.39 | 3.09 | 110 | |
5 | 4.87 | 3.06 | - | 0.38 | 3.45 | 130 |
Table 2. Weld characteristics of EBW Ti64.
Sample thickness | Crown width | Weld width | Toe width | HAZ | Weld depth | Grain size in FZ | |
---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (µm) | |
Steady state | 1 | 1.01 | 0.62 | 0.67 | 0.13 | 0.98 | 197 |
4 | 4.25 | 2.64 | - | 0.37 | 4.02 | 170 | |
5 | 4.56 | 2.71 | - | 0.38 | 4.47 | 233 | |
Non-steady state | 1 | 0.89 | 0.81 | 0.60 | 0.16 | 0.72 | 70 |
4 | 4.53 | 2.92 | - | 0.39 | 3.09 | 110 | |
5 | 4.87 | 3.06 | - | 0.38 | 3.45 | 130 |
Sample thickness (mm) | Steady state | Non-steady state | ||
---|---|---|---|---|
Empty Cell | Cooling zone width (mm) | peak cooling rate (K/s) | Cooling zone width (mm) | peak cooling rate (K/s) |
1 | 1.25 | 28,000 | 1.65 | 70,000 |
4 | 2.80 | 20,000 | 3.25 | 58,000 |
5 | 2.70 | 12,000 | 3.65 | 28,000 |
Table 3. Cooling zone width and peak cooling rates experienced in steady state and non-steady state 1 mm, 4 mm and 5 mm plate welds.
Sample thickness (mm) | Steady state | Non-steady state | ||
---|---|---|---|---|
Empty Cell | Cooling zone width (mm) | peak cooling rate (K/s) | Cooling zone width (mm) | peak cooling rate (K/s) |
1 | 1.25 | 28,000 | 1.65 | 70,000 |
4 | 2.80 | 20,000 | 3.25 | 58,000 |
5 | 2.70 | 12,000 | 3.65 | 28,000 |
Fig. 6. IPF maps of cross-sections of EBW Ti64 welds in FZ of steady and non-steady states and base material: (a, g, m) 1 mm plate, (b, h, n) 4 mm plate, (c, i, o) 5 mm plate. (d-f), (j-l), (p-r) show the higher magnification of IPF maps in different zones.
Fig. 7. $\left\{ 0001 \right\}$and $\left\{ 10\bar{1}0 \right\}$ pole figures corresponding to the different regions (FZ and BM): (a, d, g) 1 mm palte, (b, e, h) 4 mm plate, (c, f, i) 5 mm plate.
Fig. 8. (a-d) Sample 1 (1 mm); (e-h) Sample 2 (4 mm); (i-l) Sample 3 (5 mm). (a, e, i) Reconstructed 3D X-ray tomography of steady state welds. (b, f, j) Longitudinal sections illustrating the weld shape and absence of pores in the steady state welds. (c, g, k) Reconstructed 3D X-ray tomography of non-steady state welds. (d, h, l) 3D rendering of non-steady state welds showing porosity.
Sample | Yield strength (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
1 | 775±12 | 1072±7 | 4.0±0.8 |
2 | 885±8 | 1145±10 | 7.6±1.1 |
3 | 840±9 | 1090±11 | 5.4±0.9 |
Table 4. Tensile properties of EBW Ti64.
Sample | Yield strength (MPa) | UTS (MPa) | Elongation (%) |
---|---|---|---|
1 | 775±12 | 1072±7 | 4.0±0.8 |
2 | 885±8 | 1145±10 | 7.6±1.1 |
3 | 840±9 | 1090±11 | 5.4±0.9 |
Fig. 9. Fracture morphologies of EBW Ti64 welds after tensile testing at room temperature: (a) Sample 1 (1 mm); (b) Sample 2 (4 mm); (c) Sample 3 (5 mm).
[1] |
R.R. Boyer, Mater. Sci. Eng. A 213 (1996) 103-114.
DOI URL |
[2] | N. Saresh, M.G. Pillai, J. Mathew, J. Mater. Process. Technol. 192-193 (2007) 83-88. |
[3] | R.C. Reed, H.J. Stone, S.M. Roberts, J.M. Robinson, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 211 (1997) 421-428. |
[4] | J. Norrish, Advanced Welding Process-Technology and Process Control, Wood- head Publishing Limited, Cambridge, 2006. |
[5] | N. Saresh, M.G. Pillai, J. Mathew, J. Mater, Process. Technol. 192 (2007) 83-88. |
[6] |
R. Pederson, F. Niklasson, F. Skystedt, R. Warren, Mater. Sci. Eng. A 552 (2012) 555-565.
DOI URL |
[7] |
S. Zhang, Y. Ma, S. Huang, S.S. Youssef, M. Qi, H. Wang, J. Qiu, J. Lei, R. Yang, J. Mater. Sci. Technol. 35 (2019) 1681-1690.
DOI URL |
[8] |
N.K. Babu, S.G.S. Raman, C.V.S. Murthy, G.M. Reddy, Mater. Sci. Eng. A 471 (2007) 113-119.
DOI URL |
[9] |
X. Li, S. Hu, J. Xiao, L. Ji, Mater. Sci. Eng. A 529 (2011) 170-176.
DOI URL |
[10] |
S. Wang, X. Wu, Mater. Des. 36 (2012) 663-670.
DOI URL |
[11] |
K.P. Rao, K. Angamuthu, P.B. Srinivasan, J. Mater. Process. Technol. 199 (2008) 185-192.
DOI URL |
[12] |
J.L. Huang, N. Warnken, J.C. Gebelin, M. Strangwood, R.C. Reed, Acta Mater 60 (2012) 3215-3225.
DOI URL |
[13] |
J. Kar, D. Chakrabarti, S.K. Roy, G.G. Roy, J. Mater. Process. Technol. 266 (2019) 165-172.
DOI URL |
[14] | V.K. Dragunov, E.V. Terentyev, A.P. Sliva, A.L. Goncharov, D.A. Zhgut, IOP Conf. Ser.: Mater. Sci. Eng. 681 (2019) 012011. |
[15] | I.V. Zuev, Materials Processing by Concentrated Energy Flows, MPEI, Moscow, 1998. |
[16] |
T. Hashimoto, F. Matsuda, J. Jpn. Weld. Soc. 33 (1964) 38-46.
DOI URL |
[17] |
J. Goldak, A. Chakravarti, M. Bibby, Metall. Trans. B 15 (1984) 299-305.
DOI URL |
[18] |
T.F. Flint, J.A. Francis, M.C. Smith, J. Balakrishnan, J. Mater. Process. Technol. 246 (2017) 123-135.
DOI URL |
[19] |
S. Zhu, H. Yang, L.G. Guo, X.G. Fan, Mater. Charact. 70 (2012) 101-110.
DOI URL |
[20] |
S. Kou, Y. Le, Metall. Trans. A 19 (1988) 1075-1082.
DOI URL |
[21] | W.F. Savage, C.D. Lundin, A.H. Aronson, Weld. J. 44 (1965) 175S-181S |
[22] |
S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan, D.B. Miracle, Mater. Sci. Eng. A 540 (2012) 152-163.
DOI URL |
[23] |
S.F. Frederick, G.A. Lenning, Metall. Trans. B 6 (1975) 601-605.
DOI URL |
[24] | M. Peters, C. Leyens, Titanium and Titanium Alloys: Fundamentals and Appli- cations, Wiley-VCH Verlag GmbH & Co. KGaA, 2003. |
[25] | G. Lutjering, J.C. Williams, Titanium, second, Springer, Berlin Heidelberg, 2007. |
[26] |
M.H. Cai, C.Y. Lee, Y.K. Lee, Scr. Mater. 66 (2012) 606-609.
DOI URL |
[27] |
W. Qin, J. Li, Y. Liu, J. Kang, L. Zhu, D. Shu, P. Peng, D. She, D. Meng, Y. Li, Mater. Lett. 254 (2019) 116-119.
DOI URL |
[28] |
T. Kawabata, O. Izumi, J. Mater. Sci. 11 (1976) 892-902.
DOI URL |
[29] |
A. Shaikh, S. Kumar, A. Dawari, K. Shreyas, A. Patil, R. Singh, Procedia Struct. Integr. 14 (2019) 782-789.
DOI URL |
[30] |
H. Beladi, Q. Chao, G.S. Rohrer, Acta Mater 80 (2014) 478-489.
DOI URL |
[31] |
G.C. Obasi, S. Birosca, J.Quinta Da Fonseca, M. Preuss, Acta Mater 60 (2012) 1048-1058.
DOI URL |
[32] |
J.L.W. Warwick, N.G. Jones, I. Bantounas, M. Preuss, D. Dye, Acta Mater 61 (2013) 1603-1615.
DOI URL |
[33] |
A.A. Antonysamy, J. Meyer, P.B. Prangnell, Mater. Charact. 84 (2013) 153-168.
DOI URL |
[34] |
F.J. Gil, M.P. Ginebra, J.M. Manero, J.A. Planell, J. Alloy. Compd. 329 (2001) 142-152.
DOI URL |
[35] |
R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, J. Mater, Process. Technol. 133 (2003) 84-89.
DOI URL |
[1] | Guhui Gao, Rong Liu, Yusong Fan, Guian Qian, Xiaolu Gui, R.D.K. Misra, Bingzhe Bai. Mechanism of subsurface microstructural fatigue crack initiation during high and very-high cycle fatigue of advanced bainitic steels [J]. J. Mater. Sci. Technol., 2022, 108(0): 142-157. |
[2] | Lixia Ma, Min Wan, Weidong Li, Jie Shao, Xiaoning Han, Jichun Zhang. On the superplastic deformation mechanisms of near-α TNW700 titanium alloy [J]. J. Mater. Sci. Technol., 2022, 108(0): 173-185. |
[3] | Changshu He, Ying Li, Jingxun Wei, Zhiqiang Zhang, Ni Tian, Gaowu Qin, Xiang Zhao. Enhancing the mechanical performance of Al-Zn-Mg alloy builds fabricated via underwater friction stir additive manufacturing and post-processing aging [J]. J. Mater. Sci. Technol., 2022, 108(0): 26-36. |
[4] | Juan Li, Yaqun Xu, Wenlong Xiao, Chaoli Ma, Xu Huang. Development of Ti-Al-Ta-Nb-(Re) near-α high temperature titanium alloy: Microstructure, thermal stability and mechanical properties [J]. J. Mater. Sci. Technol., 2022, 109(0): 1-11. |
[5] | Bangyang Zhou, Jian He, Qijie Zhou, Hongbo Guo. Effects of laser shock processing on θ-Al2O3 to α-Al2O3 transformation and oxide scale morphology evolution in (γ’+β) two-phase Ni-34Al-0.1Dy alloys [J]. J. Mater. Sci. Technol., 2022, 109(0): 157-166. |
[6] | S. Shuang, Q. Yu, X. Gao, Q.F. He, J.Y. Zhang, S.Q. Shi, Y. Yang. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 197-208. |
[7] | Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites [J]. J. Mater. Sci. Technol., 2022, 109(0): 228-244. |
[8] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[9] | Jinlong Su, Xiankun Ji, Jin Liu, Jie Teng, Fulin Jiang, Dingfa Fu, Hui Zhang. Revealing the decomposition mechanisms of dislocations and metastable α' phase and their effects on mechanical properties in a Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2022, 107(0): 136-148. |
[10] | Xiaoping Ma, Dianzhong Li. Multi-scale dendritic patterns sequentially superimposed in a primary semi-solid matrix [J]. J. Mater. Sci. Technol., 2022, 107(0): 26-33. |
[11] | Joung Sik Suh, Byeong-Chan Suh, Sang Eun Lee, Jun Ho Bae, Byoung Gi Moon. Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning [J]. J. Mater. Sci. Technol., 2022, 107(0): 52-63. |
[12] | Peihao Geng, Ninshu Ma, Hong Ma, Yunwu Ma, Kazuki Murakami, Huihong Liu, Yasuhiro Aoki, Hidetoshi Fujii. Flat friction spot joining of aluminum alloy to carbon fiber reinforced polymer sheets: Experiment and simulation [J]. J. Mater. Sci. Technol., 2022, 107(0): 266-289. |
[13] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[14] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[15] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||