J. Mater. Sci. Technol. ›› 2022, Vol. 112: 123-129.DOI: 10.1016/j.jmst.2021.10.015
• Research Article • Previous Articles Next Articles
Jia Chena, Min Guoa(), Min Yanga, Lin Liua, Jun Zhang(
)
Received:
2021-08-03
Revised:
2021-10-11
Accepted:
2021-10-13
Published:
2021-12-11
Online:
2021-12-11
Contact:
Min Guo,Jun Zhang
About author:
zhjscott@nwpu.edu.cn (J. Zhang).1 These authors contributed equally to this work.
Jia Chen, Min Guo, Min Yang, Lin Liu, Jun Zhang. Double minimum creep processing and mechanism for γʹ strengthened cobalt-based superalloy[J]. J. Mater. Sci. Technol., 2022, 112: 123-129.
Parameters | Values |
---|---|
Equilibrium concentrations | cm=0.17, cp=0.23 |
Bulk free energy coefficients | Δf=80J/mol, cs=0.20 |
Gradient energy coefficients [ | α=9.0×10-10J/m, β=6.8×10-11J/m |
Elastic constants of γʹ [ | |
Elastic constants of γ [ | |
chemical mobility [ | M=5.02×10-26m2/s·J |
γ/γʹ lattice misfit [ | δ=0.46% |
Table 1. Simulation parameters for the phase-field model.
Parameters | Values |
---|---|
Equilibrium concentrations | cm=0.17, cp=0.23 |
Bulk free energy coefficients | Δf=80J/mol, cs=0.20 |
Gradient energy coefficients [ | α=9.0×10-10J/m, β=6.8×10-11J/m |
Elastic constants of γʹ [ | |
Elastic constants of γ [ | |
chemical mobility [ | M=5.02×10-26m2/s·J |
γ/γʹ lattice misfit [ | δ=0.46% |
h1 | h2 | h2 | h3 | h3 | h3 | h3 | h4 | h2 | h3 | h2 | h4 |
---|---|---|---|---|---|---|---|---|---|---|---|
h2 | h1 | h2 | h3 | h2 | h4 | h2 | h3 | h3 | h3 | h4 | h2 |
h2 | h2 | h1 | h3 | h4 | h2 | h3 | h2 | h4 | h2 | h3 | h3 |
h3 | h3 | h3 | h1 | h2 | h2 | h4 | h3 | h2 | h4 | h2 | h3 |
h3 | h2 | h4 | h2 | h1 | h2 | h2 | h3 | h4 | h3 | h3 | h2 |
h3 | h4 | h2 | h2 | h2 | h1 | h3 | h2 | h3 | h2 | h4 | h3 |
h3 | h2 | h3 | h4 | h2 | h3 | h1 | h2 | h2 | h4 | h3 | h2 |
h4 | h3 | h2 | h3 | h3 | h2 | h2 | h1 | h2 | h2 | h3 | h4 |
h2 | h3 | h4 | h2 | h4 | h3 | h2 | h2 | h1 | h3 | h2 | h3 |
h3 | h3 | h2 | h4 | h3 | h2 | h4 | h2 | h3 | h1 | h2 | h2 |
h2 | h4 | h3 | h2 | h3 | h4 | h3 | h3 | h2 | h2 | h1 | h2 |
h4 | h2 | h3 | h3 | h2 | h3 | h2 | h4 | h3 | h2 | h2 | h1 |
Table 2. Expression of the interaction matrix for octahedral slip systems.
h1 | h2 | h2 | h3 | h3 | h3 | h3 | h4 | h2 | h3 | h2 | h4 |
---|---|---|---|---|---|---|---|---|---|---|---|
h2 | h1 | h2 | h3 | h2 | h4 | h2 | h3 | h3 | h3 | h4 | h2 |
h2 | h2 | h1 | h3 | h4 | h2 | h3 | h2 | h4 | h2 | h3 | h3 |
h3 | h3 | h3 | h1 | h2 | h2 | h4 | h3 | h2 | h4 | h2 | h3 |
h3 | h2 | h4 | h2 | h1 | h2 | h2 | h3 | h4 | h3 | h3 | h2 |
h3 | h4 | h2 | h2 | h2 | h1 | h3 | h2 | h3 | h2 | h4 | h3 |
h3 | h2 | h3 | h4 | h2 | h3 | h1 | h2 | h2 | h4 | h3 | h2 |
h4 | h3 | h2 | h3 | h3 | h2 | h2 | h1 | h2 | h2 | h3 | h4 |
h2 | h3 | h4 | h2 | h4 | h3 | h2 | h2 | h1 | h3 | h2 | h3 |
h3 | h3 | h2 | h4 | h3 | h2 | h4 | h2 | h3 | h1 | h2 | h2 |
h2 | h4 | h3 | h2 | h3 | h4 | h3 | h3 | h2 | h2 | h1 | h2 |
h4 | h2 | h3 | h3 | h2 | h3 | h2 | h4 | h3 | h2 | h2 | h1 |
Parameters | Values |
---|---|
Initial threshold of γʹ | |
Initial threshold of γ | |
Norton law coefficients | n=6, |
Hardening coefficients | |
Damage coefficients | |
Table 3. Fitted parameters for the crystal plasticity model [[33], [34]].
Parameters | Values |
---|---|
Initial threshold of γʹ | |
Initial threshold of γ | |
Norton law coefficients | n=6, |
Hardening coefficients | |
Damage coefficients | |
Fig. 3. Simulated γ/γʹ microstructure at strain of (a) 2.6 × 10-5, (b) 0.48%, (c) 0.97%, (d) 2.46%, (e) 3.16%; and (f) experimental microstructure at the global creep rate minimum of ERBOCo-2Ta under 950 °C /150 MPa [6].
Fig. 4. The evolutions of shear strain rate ${{\dot{\gamma }}^{s}}$ in slip systems B2 $\left( 111 \right)\left[ 0\bar{1}1 \right]$ and B5 $\left( 111 \right)\left[ \bar{1}10 \right]$ at creep strain of (a1, a2) 2.6 × 10-5, (b1, b2) 0.48%, (c1, c2) 0.97%, (d1, d2) 2.48% and (e1, e2) 3.16%. The contour of γʹ is depicted in Fig. 4(a2) to avoid confusing rafting phenomenon.
[1] |
J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Science 312 (2006) 90-91.
PMID |
[2] |
A. Suzuki, H. Inui, T.M. Pollock, Annu. Rev. Mater. Res. 45 (2015) 345-368.
DOI URL |
[3] | T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki, JOM 62 (2010) 58-63. |
[4] |
F. Pyczak, A. Bauer, M. Göken, S. Neumeier, U. Lorenz, M. Oehring, N. Schell, A. Schreyer, A. Stark, F. Symanzik, Mater. Sci. Eng. A 571 (2013) 13-18.
DOI URL |
[5] |
H.J. Zhou, H. Chang, Q. Feng, Scr. Mater. 135 (2017) 84-87.
DOI URL |
[6] |
F. Xue, C.H. Zenk, L.P. Freund, M. Hoelzel, S. Neumeier, M. Göken, Scr. Mater. 142 (2018) 129-132.
DOI URL |
[7] |
S. Lu, S. Antonov, L. Li, C. Liu, X. Zhang, Y. Zheng, H.L. Fraser, Q. Feng, Acta Mater 190 (2020) 16-28.
DOI URL |
[8] |
H. Mughrabi, Acta Mater 81 (2014) 21-29.
DOI URL |
[9] |
Y. Li, F. Pyczak, J. Paul, M. Oehring, U. Lorenz, Z. Yao, J. Mater. Res. 32 (2017) 4522-4530.
DOI URL |
[10] | F. Xue, H.J. Zhou, Q. Feng, JOM 66 (2014) 24 86-24 94. |
[11] |
S. Lu, S. Antonov, L.F. Li, Q. Feng, Metall. Mater. Trans. A 49 (2018) 4079-4089.
DOI URL |
[12] |
J. He, C.H. Zenk, X. Zhou, S. Neumeier, D. Raabe, B. Gault, S.K. Makineni, Acta Mater 184 (2020) 86-99.
DOI URL |
[13] |
X. Wu, P. Wollgramm, C. Somsen, A. Dlouhy, A. Kostka, G. Eggeler, Acta Mater 112 (2016) 242-260.
DOI URL |
[14] |
R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, C.M.F. Rae, Acta Mater 47 (1999) 3367-3381.
DOI URL |
[15] |
K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, H. Inui, Philos. Mag. 92 (2012) 4011-4027.
DOI URL |
[16] |
X. Liu, H. Kong, Y. Lu, J. Huang, C. Wang, Prog. Nat. Sci.: Mater. Int. 30 (2020) 382-392.
DOI URL |
[17] | C. Wang, M.A. Ali, S. Gao, J.V. Goerler, I. Acta Mater 175 (2019) 21-34. |
[18] |
D. Wang, Y. Li, S. Shi, X. Tong, Z. Yan, Mater. Des. 196 (2020) 109077.
DOI URL |
[19] |
D.Y. Li, L.Q. Chen, Acta Mater 47 (1999) 247-257.
DOI URL |
[20] |
Q. Wang, G. Zhang, Y. Li, Z. Hong, D. Wang S. Shi, npj Comput. Mater. 6 (2020) 176.
DOI URL |
[21] |
S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W. Ju, C. Ouyang, R. Xiao, Chin. Phys. B 25 (2016) 018212.
DOI URL |
[22] |
Y. Ren, Z.Y. Zou, Q. Zhao, D. Wang, J. Yu, S.Q. Shi, Acta Phys. Sin. 69 (2020) 226601.
DOI URL |
[23] |
M. Cottura, Y.Le Bouar, A. Finel, B. Appolaire, K. Ammar, S. Forest, J. Mech. Phys. Solids 60 (2012) 1243-1256.
DOI URL |
[24] |
R.H. Wu, M. Zaiser, S. Sandfeld, Int. J. Plast. 95 (2017) 142-162.
DOI URL |
[25] |
A. Gaubert, Y.Le Bouar, A. Finel, Philos. Mag. 90 (2010) 375-404.
DOI URL |
[26] |
M. Yang, J. Zhang, H. Wei, W. Gui, H. Su, T. Jin, L. Liu, Scr. Mater. 147 (2018) 16-20.
DOI URL |
[27] | M. Yang, J. Zhang, W. Gui, S. Hu, Z. Li, M. Guo, H. Su, L. Liu, J. Mater. Sci. Tech-nol. 71 (2020) 129-137. |
[28] |
J. Chen, M. Guo, M. Yang, H.J. Su, L. Liu, J. Zhang, Comput. Mater. Sci. 191 (2021) 110358.
DOI URL |
[29] |
L. Wang, M. Oehring, Y.Z. Li, L. Song, Y. Liu, A. Stark, U. Lorenz, F. Pyczak, J. Alloys Compd. 787 (2019) 594-605.
DOI URL |
[30] | S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Ro-gal, R. Drautz, M. Göken, Acta Mater 106 (2016) 304-312. |
[31] |
Y. Wang, D. Banerjee, C.C. Su, A.G. Khachaturyan, Acta Mater 46 (1998) 2983-3001.
DOI URL |
[32] |
M. Yang, H. Wei, J. Zhang, Y. Zhao, T. Jin, L. Liu, X.F. Sun, Comput. Mater. Sci. 129 (2017) 211-219.
DOI URL |
[33] |
I.N. Vladimirov, S. Reese, G. Eggeler, Int. J. Mech. Sci. 51 (2009) 305-313.
DOI URL |
[34] |
L. Méric, P. Poubanne, G. Cailletaud, J. Eng. Mater. Technol. 113 (1991) 162-170.
DOI URL |
[35] |
D. Gong, J. Sun, Z. Miao, IEEE Trans. Evol. Comput. 22 (2018) 47-60.
DOI URL |
[36] |
S. Meher, S. Nag, J. Tiley, A. Goel, R. Banerjee, Acta Mater 61 (2013) 4266-4276.
DOI URL |
[37] |
A.M. Jokisaari, S.S. Naghavi, C. Wolverton, P.W. Voorhees, O.G. Heinonen, Acta Mater 141 (2017) 273-284.
DOI URL |
[38] |
W.W. Xu, J.J. Han, Y. Wang, C.P. Wang, X.J. Liu, Z.K. Liu, Acta Mater. 61 (2013) 5437-5448.
DOI URL |
[39] | R.C. Reed, The Superalloys Fundamentals and Applications, Cambridge Univer-sity Press, Cambridge, 2006. |
[40] |
A. Epishin, T. Link, Philos. Mag. 84 (2004) 1979-2000.
DOI URL |
[41] |
P. Franciosi, Acta Metall 33 (1985) 1601-1612.
DOI URL |
[42] |
M. Cottura, B. Appolaire, A. Finel, Y.Le Bouar, J. Mech. Phys. Solids 94 (2016) 473-489.
DOI URL |
[43] |
C.M.F. Rae, R.C. Reed, Acta Mater 55 (2007) 1067-1081.
DOI URL |
[44] |
C.M.F. Rae, N. Matan, D.C. Cox, M.A. Rist, R.C. Reed, Metall. Mater. Trans. A 31 (2000) 2219-2228.
DOI URL |
[1] | Z.R. Xu, J.C. Qiao, J. Wang, E. Pineda, D. Crespo. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep [J]. J. Mater. Sci. Technol., 2022, 99(0): 39-47. |
[2] | H.Y. Song, M.C. Lam, Y. Chen, S. Wu, P.D. Hodgson, X.H. Wu, Y.M. Zhu, A.J. Huang. Towards creep property improvement of selective laser melted Ni-based superalloy IN738LC [J]. J. Mater. Sci. Technol., 2022, 112(0): 301-314. |
[3] | C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩ [J]. J. Mater. Sci. Technol., 2022, 104(0): 224-235. |
[4] | Wenrui An, Satoshi Utada, Xiaotong Guo, Stoichko Antonov, Weiwei Zheng, Jonathan Cormier, Qiang Feng. Thermal cycling creep properties of a directionally solidified superalloy DZ125 [J]. J. Mater. Sci. Technol., 2022, 104(0): 269-284. |
[5] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[6] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
[7] | J. Li, C. Xu, G. Zheng, W.J. Dai, C.C. Bu, G. Chen. On the microstructural origin of premature failure of creep strength enhanced martensitic steels [J]. J. Mater. Sci. Technol., 2021, 87(0): 269-279. |
[8] | W.-W. Xu, G.H. Yin, Z.Y. Xiong, Q. Yu, T.Q. Gang, L.J. Chen. Plasticity-induced stacking fault behaviors of γ’ precipitates in novel CoNi-based superalloys [J]. J. Mater. Sci. Technol., 2021, 90(0): 20-29. |
[9] | Chengqi Sun, Yanqing Li, Kuilong Xu, Baotong Xu. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77(0): 223-236. |
[10] | Tobias Mittnacht, P.G. Kubendran Amos, Daniel Schneider, Britta Nestler. Morphological stability of three-dimensional cementite rods in polycrystalline system: A phase-field analysis [J]. J. Mater. Sci. Technol., 2021, 77(0): 252-268. |
[11] | Yeshun Huang, Xinguang Wang, Chuanyong Cui, Zihao Tan, Jinguo Li, Yanhong Yang, Jinlai Liu, Yizhou Zhou, Xiaofeng Sun. Effect of thermal exposure on the microstructure and creep properties of a fourth-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 69(0): 180-187. |
[12] | Wanshun Xia, Xinbao Zhao, Liang Yue, Quanzhao Yue, Jiangwei Wang, Qingqing Ding, Hongbin Bei, Ze Zhang. Inconsistent creep between dendrite core and interdendritic region under different degrees of elemental inhomogeneity in nickel-based single crystal superalloys✩ [J]. J. Mater. Sci. Technol., 2021, 92(0): 88-97. |
[13] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[14] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[15] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||