J. Mater. Sci. Technol. ›› 2022, Vol. 112: 130-137.DOI: 10.1016/j.jmst.2021.09.048
• Research Article • Previous Articles Next Articles
Jinyong Zhanga,b,c, Bingnan Qiand, Wang Lina, Ping Zhanga,*(), Yijin Wua, Yangyang Fua, Yu Fana, Zheng Chena, Jun Chenge, Jinshan Lib, Yuan Wuc,*(
), Yu Wangf, Fan Sund,*(
)
Received:
2021-07-24
Revised:
2021-09-18
Accepted:
2021-09-18
Published:
2021-12-14
Online:
2021-12-14
Contact:
Ping Zhang,Yuan Wu,Fan Sun
About author:
fan.sun@chimieparistech.psl.eu (F.Sun).1 These authors contributed equally to this work.
Jinyong Zhang, Bingnan Qian, Wang Lin, Ping Zhang, Yijin Wu, Yangyang Fu, Yu Fan, Zheng Chen, Jun Cheng, Jinshan Li, Yuan Wu, Yu Wang, Fan Sun. Compressive deformation-induced hierarchical microstructure in a TWIP β Ti-alloy[J]. J. Mater. Sci. Technol., 2022, 112: 130-137.
Fig. 1. (a) The photo of the sample for DIC test and the corresponding selected-area for observing the strain distribution; (b) The compressive stress-strain curve of the Ti-12Mo-10Zr ST sample, The different strain levels were marked with the capital letter ‘A-G’ in (b), respectively; (c) 2D full-field strain maps with the bar of strain distribution and the corresponding max of local compression strain (defined as εmax) at different strain levels (A-G); (d) The percentage of absolute values of the variations vs the strain (ε), along compression direction (length), perpendicular to compression direction (width), and the area of the selected area. The width, length and selected-area were marked at the strain ε = 0.
Fig. 2. EBSD analysis of the Ti-12Mo-10Zr as-quenched sample at compressive strain ε ≈ 0.08. (a) IPF maps. The deformation bands were marked as band-1, band-2 and band-3 in the Close-up IPF maps of selected-area on the right side of (a). The twin planes of these deformation twinning were also identified; (b) Pole figures of β matrix and 332T variants. The blue cycles indicate the common {322} plane between β matrix and 332T; (c) Image quality (IQ) maps; (d) The point-to-point and point-to-origin misorientation profiles of band-1 and band-2 marked in (a).
Fig. 3. EBSD analysis of the Ti-12Mo-10Zr as-quenched sample at strain ε ≈ 0.15. (a) IPF maps. The deformation bands were marked as band-1, band-2, band-3 and band-4 in the IPF maps. The twin planes of these deformation twinning were also identified; (b) Pole figures of β matrix, 332T variants and 2nd 332T. The blue cycles indicate the common {322} plane between β matrix and 332T (or between the 1st
Fig. 4. TEM microgaphs of the Ti-12Mo-10Zr compressed samples: (a) BF image of 332T bands (low magnification); (b) Close-up BF image of selected-area in (a); (c, d) The corresponding SAED patterns of selected-area in (b) labeled c and d with white dotted cycles, along the zone axis (ZA) [110]β; (e, f) DF images were highlighted by using marked diffraction spots in (d), respectively.
Fig. 5. TEM micrographs of the Ti-12Mo-10Zr compressed samples: (a) BF image (low magnification), the 332T bands were noted by white arrows; (b) Close-up BF image of selected-area in (a), the dislocation slip bands were also presented by yellow arrows; (c, d) The corresponding SAED patterns of selected-area in (b) labeled c and d with white dotted cycles, along the zone axis (ZA) [110]β; (e, f) DF images were highlighted by using marked diffraction spots in (d), respectively.
[1] |
D. Banerjee, J.C. Williams, Acta Mater. 61 (2013) 844-879.
DOI URL |
[2] |
Y. Huang, Y. Liu, C. Li, Z. Ma, L. Yu, H. Li, Vacuum 161 (2019) 209-219.
DOI |
[3] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[4] |
X. Li, K. Lu, Science 364 (2019) 733-734.
DOI URL |
[5] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. 16 (2016) 2404-2415.
DOI URL |
[6] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[7] |
Q. Li, X. Lin, Q. Luo, Y. Chen, J. Wang, B. Jiang, F. Pan, Int. J. Miner. Metall. Mater. (2021), doi: 10.1007/s12613-021-2337-8.
DOI |
[8] |
F. Sun, J.Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laillé, P. Castany, C. Curfs, P.J. Jacques, F. Prima, Acta Mater. 61 (2013) 6406-6417.
DOI URL |
[9] |
F. Sun, J.Y. Zhang, M. Marteleur, C. Brozek, E.F. Rauch, M. Veron, P. Vermaut, P.J. Jacques, F. Prima, Scr. Mater. 94 (2015) 17-20.
DOI URL |
[10] |
X. Min, X. Chen, S. Emura, K. Tsuchiya, Scr. Mater. 69 (2013) 393-396.
DOI URL |
[11] |
B. Qian, J. Zhang, Y. Fu, F. Sun, Y. Wu, J. Cheng, P. Vermaut, F. Prima, J. Mater. Sci. Technol. 65 (2021) 228-237.
DOI URL |
[12] |
L. Ren, W. Xiao, C. Ma, R. Zheng, L. Zhou, Scr. Mater. 156 (2018) 47-50.
DOI URL |
[13] |
F. Sun, J.Y. Zhang, P. Vermaut, D. Choudhuri, T. Alam, S.A. Mantri, P. Svec, T. Gloriant, P.J. Jacques, R. Banerjee, F. Prima, Mater. Res. Lett. 5 (2017) 547-553.
DOI URL |
[14] |
J. Zhang, J. Li, G. Chen, L. Liu, Z. Chen, Q. Meng, B. Shen, F. Sun, F. Prima, Mater. Charact. 139 (2018) 421-427.
DOI URL |
[15] |
J. Zhang, F. Sun, Z. Chen, Y. Yang, B. Shen, J. Li, F. Prima, Mater. Res. Lett. 7 (2019) 251-257.
DOI URL |
[16] |
L. Lilensten, Y. Danard, C. Brozek, S. Mantri, P. Castany, T. Gloriant, P. Vermaut, F. Sun, R. Banerjee, F. Prima, Acta Mater. 162 (2019) 268-276.
DOI |
[17] |
J. Gao, Y. Huang, D. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth, Acta Mater. 152 (2018) 301-314.
DOI URL |
[18] |
B. Qian, L. Lilensten, J. Zhang, M. Yang, F. Sun, P. Vermaut, F. Prima, Mater. Sci. Eng. A 822 (2021) 141672.
DOI URL |
[19] |
M.J. Lai, C.C. Tasan, D. Raabe, Acta Mater. 111 (2016) 173-186.
DOI URL |
[20] |
J.Y. Zhang, J.S. Li, Z. Chen, Q.K. Meng, F. Sun, B.L. Shen, J. Alloy. Compd. 699 (2017) 775-782.
DOI URL |
[21] | F. Sun, J.Y. Zhang, C. Brozek, M. Marteleur, M. Veron, E. Rauch, T. Gloriant, P. Vermaut, C. Curfs, P.J. Jacques, F. Prima, Mater. Today Proc. 2 (2015) S505-S510. |
[22] |
J. Zhang, Y. Fu, Y. Wu, B. Qian, Z. Chen, A. Inoue, Y. Wu, Y. Yang, F. Sun, J. Li, F. Prima, Mater. Res. Lett. 8 (2020) 247-253.
DOI URL |
[23] |
H. Qin, J.J. Jonas, Acta Mater. 75 (2014) 198-211.
DOI URL |
[24] |
X. Li, J. Li, B. Zhou, M. Yu, M. Sui, J. Mater. Sci. Technol. 35 (2019) 660-666.
DOI URL |
[25] |
S.A. Mantri, F. Sun, D. Choudhuri, T. Alam, B. Gwalani, F. Prima, R. Banerjee, Sci. Rep. 9 (2019) 1334.
DOI PMID |
[26] |
J. Zhang, B. Qian, Y. Wu, Y. Wang, J. Cheng, Z. Chen, J. Li, F. Sun, F. Prima, J. Mater. Sci. Technol. 74 (2021) 21-26.
DOI URL |
[27] |
E.Ç. Kavdir, M.D. Aydin, Compos. Part B Eng. 173 (2019) 106995.
DOI URL |
[28] | E. Bertrand, P. Castany, I. Péron, T. Gloriant, Scr. Mater. 64 (2011) 1110-1113. |
[29] |
F. Lin, M. Marteleur, P.J. Jacques, L. Delannay, Int. J. Plast. 105 (2018) 195-210.
DOI URL |
[30] |
J.Y. Zhang, G.F. Chen, Y.Y. Fu, Y. Fan, Z. Chen, J. Xu, H. Chang, Z.H. Zhang, J. Zhou, Z. Sun, B.L. Shen, F. Sun, J. Alloy. Compd. 799 (2019) 389-397.
DOI |
[31] |
Y. Danard, G. Martin, L. Lilensten, F. Sun, A. Seret, R. Poulain, S. Mantri, R. Guil- lou, D. Thiaudière I. Freiherr von Thüngen, D. Galy, M. Piellard, N. Bozzolo, R. Banerjee, F. Prima, Mater. Sci. Eng. A 819 (2021) 141437.
DOI URL |
[32] |
S. Sadeghpour, S.M. Abbasi, M. Morakabati, A. Kisko, L.P. Karjalainen, D. A. Porter, J. Alloy. Compd. 746 (2018) 206-217.
DOI URL |
[33] |
X. Wu, Y. Zhu, Mater. Res. Lett. 5 (2017) 527-532.
DOI URL |
[1] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[2] | Zhang Lihua, Lan Jianbo, Yang Jianyu, Guo Shenghui, Peng Jinhui, Zhang Libo, Zhou Chaojin, Ju Shaohua. Facile Synthesis of Nanocrystal Tin Oxide Hollow Microspheres by Microwave-Assisted Spray Pyrolysis Method [J]. J. Mater. Sci. Technol., 2017, 33(8): 874-878. |
[3] | A. Barroso-Bogeat , M. Alexandre-Franco, C. Fern, ndez-Gonz, lez, V. G, mez-Serrano. Preparation and Microstructural Characterization of Activated Carbon-Metal Oxide Hybrid Catalysts: New Insights into Reaction PathsA. [J]. J. Mater. Sci. Technol., 2015, 31(8): 806-814. |
[4] | Xiaoli Cui, Yuying Wu, Xiangfa Liu. Microstructural Characterization and Mechanical Properties of VB2/A390 Composite Alloy [J]. J. Mater. Sci. Technol., 2015, 31(10): 1027-1033. |
[5] | Haibao Zhang, Shaowei Jin, Guotao Duan, Jingjing Wang, Weiping Cai. Controllable Synthesis of Well-aligned ZnO Nanorod Arrays on Varying Substrates via Rapid Electrodeposition [J]. J. Mater. Sci. Technol., 2014, 30(11): 1118-1123. |
[6] | Ying Wang, Zhenghong Guo, Nailu Chen, Yonghua Rong. Deformation Temperature Dependence of Mechanical Properties and Microstructures for a Novel Quenching-Partitioning-Tempering Steel [J]. J. Mater. Sci. Technol., 2013, 29(5): 451-457. |
[7] | Vipin Chawla R. Jayaganthan Ramesh Chandra. Influence of Sputtering Pressure on the Structure and Mechanical Properties of Nanocomposite Ti-Si-N Thin Films [J]. J Mater Sci Technol, 2010, 26(8): 673-678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||