J. Mater. Sci. Technol. ›› 2022, Vol. 109: 245-253.DOI: 10.1016/j.jmst.2021.08.029
• Research Article • Previous Articles Next Articles
Hae Jin Parka, Hee Jin Leea, Tae Kyung Kima, Sung Hwan Honga, Wei-Min Wangb, Taek Jib Choia, Ki Buem Kima,*()
Received:
2021-06-07
Revised:
2021-07-31
Accepted:
2021-08-01
Published:
2022-05-20
Online:
2021-10-08
Contact:
Ki Buem Kim
About author:
* E-mail address: kbkim@sejong.ac.kr (K.B. Kim).Hae Jin Park, Hee Jin Lee, Tae Kyung Kim, Sung Hwan Hong, Wei-Min Wang, Taek Jib Choi, Ki Buem Kim. Formation of photo-reactive heterostructure from a multicomponent amorphous alloy with atomically random distribution[J]. J. Mater. Sci. Technol., 2022, 109: 245-253.
Fig. 1. Alloy design and synthesis of TiCuNiSn metallic glass. (a) Schematic illustrations of the atomically disordered amorphous structure. (b) Schematic illustrations of the layered structure of the water splitting electrode fabricated by one-step process. (c) Digital micrograph. (d) XRD pattern.
Fig. 2. Phase and structural characterization of TCNS-96. (a) Bright field (BF) TEM image and selected area electron diffraction (SAED) patterns of each individual layer from oxide to metal of TCNS-96. (b) High-resolution (HR) TEM image and SAED patterns taken form Oxide layer (O), Interlayer (I), and Metal layer (M). (c) HAADF scanning TEM image and the line profile of TCNS-96. (d) The elemental mappings of Ti, Cu, Ni, Sn, and O collected from the ribbon within the oxide layer of TCNS-96.
Fig. 3. XPS depth profiling of the TCNS-96 from the individual layers. (a) De-convoluted XPS spectra for the Sn 3d5/2 peaks. (b) Ti 2p3/2 and Ti 2p1/2 peaks from the surface (i), the oxide layer (ii), the interlayer (iii), and the metal layer (iv).
Fig. 4. PEC performance evaluation of TCNS-96. (a) Linear sweep voltammetry (LSV) scans of TCNS-96 with a scan rate of 10 mV s-1 indicating the potential versus RHE for HER. (b) LSV scans for OER. Dark LSV curves are presented as a black line in each figure. The inset of a displays a band diagram of electrolyte heterojunction at equilibrium where the Fermi level of the HER and OER levels are aligned. The inset of (b) shows the time-dependent photocurrent density of the TCNS-96 photoelectrode during repeated on/off cycling of simulated sunlight illumination.
Fig. 5. PEC performance of TCNS-96 as the counter electrode while acting as the working electrode, simultaneously. (a) Schematic illustration of a PEC cell for water splitting in a three-electrode configuration: working electrode-TCNS-96, reference electrode-Ag/AgCl, and counter electrode-TCNS-96 (b) a digital micrograph of the PEC cell. (c) Linear sweep voltammetry (LSV) scans using a PEC cell with TCNS-96 as a counter electrode at a scan rate of 10 mV s-1 indicating the potential versus RHE for HER. Dark and light LSV curves using a PEC cell with Pt as a counter electrode are presented as black and magenta lines, respectively, in the figure. (d) Time-dependent photocurrent density from PEC cell with TCNS-96 as both a counter electrode and a working electrode and the illumination period is 20 s.
[1] |
A. Inoue, Acta Mater. 48 (2000) 279-306.
DOI URL |
[2] |
W.L. Johnson, MRS Bull. 24 (1999) 42-56.
DOI URL |
[3] |
J.M. Park, H.J. Chang, K.H. Han, W.T. Kim, D.H. Kim, Scr. Mater. 53 (2005) 1-6.
DOI URL |
[4] |
D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Nature 451 (2008) 1085-1089.
DOI URL |
[5] |
Y. Wu, Y. Xiao, G. Chen, C.T. Liu, Z. Lu, Adv. Mater. 22 (2010) 2770-2773.
DOI URL |
[6] |
J.M. Park, D.H. Kim, M. Stoica, N. Mattern, R. Li, J. Eckert, J. Mater. Res. 26 (2011) 2080.
DOI URL |
[7] |
M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, A.D. Taylor, ACS Nano 5 (2011) 2979-2983.
DOI URL |
[8] |
M. Chen, Annu. Rev. Mater. Res. 38 (2008) 445-469.
DOI URL |
[9] |
K. Takanabe, ACS Catal. 7 (2017) 8006-8022.
DOI URL |
[10] |
B.W. An, E.J. Gwak, K. Kim, Y.C. Kim, J. Jang, J.Y. Kim, J.U. Park, Nano Lett. 16 (2016) 471-478.
DOI URL |
[11] |
G. Doubek, R.C. Sekol, J. Li, W. Ryu, F.S. Gittleson, S. Nejati, E. Moy, C. Reid, M. Carmo, M. Linardi, Adv. Mater. 28 (2016) 1940-1949.
DOI |
[12] |
Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, Y. Yang, P.F. Guan, D.W. Ding, Z.L. Wang, Adv. Mater. 28 (2016) 10293-10297.
DOI URL |
[13] |
L.C. Zhang, Z. Jia, F. Lyu, S.X. Liang, J. Lu, Prog. Mater. Sci. 105 (2019) 100576.
DOI URL |
[14] |
B. Sarac, Y.P. Ivanov, T. Karazehir, M. Mühlbacher, B. Kaynak, A.L. Greer, A.S. Sarac, J. Eckert, Mater. Horiz. 6 (2019) 1481-1487.
DOI URL |
[15] |
F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, Adv. Mater. 29 (2017) 1606570.
DOI URL |
[16] |
Y. Hu, C. Sun, C. Sun, ChemCatChem 11 (2019) 2401-2414.
DOI URL |
[17] |
S. Gao, J. Jia, S. Chen, H. Luan, Y. Shao, K. Yao, RSC Adv. 7 (2017) 27058-27064.
DOI URL |
[18] | Y. Tan, F. Zhu, H. Wang, Y. Tian, A. Hirata, T. Fujita, M. Chen, Adv. Mater. Inter-faces 4 (2017) 1601086. |
[19] |
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110 (2010) 6446-6473.
DOI URL |
[20] |
T.J. Meyer, Nature 451 (2008) 778-780.
DOI URL |
[21] |
S. Chu, A. Majumdar, Nature 488 (2012) 294-303.
DOI URL |
[22] |
K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440 (2006) 295.
DOI URL |
[23] |
S. Park, Y. Shao, J. Liu, Y. Wang, Energy Environ. Sci. 5 (2012) 9331-9344.
DOI URL |
[24] |
M. Gong, H. Dai, Nano Res. 8 (2015) 23-39.
DOI URL |
[25] |
W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116 (2016) 7159-7329.
DOI URL |
[26] |
X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, D. Wang, Nano Res. 8 (2015) 56-81.
DOI URL |
[27] |
M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116 (2016) 3594-3657.
DOI URL |
[28] | Y.C. Kim, S. Yi, W.T. Kim, D.H. Kim, MRS Online Proc. Libr. Arch. 644 (2000) 491-496. |
[29] |
N.S. Saadi, L.B. Hassan, T. Karabacak, Sci. Rep. 7 (2017) 1-8.
DOI URL |
[30] |
H.J. Park, J.H. Lee, Y.S. Kim, S.C. Mun, T.J. Choi, E. Jumaev, S.H. Hong, J.T. Kim, J.M. Park, K.B. Kim, Mater. Des. 167 (2019) 107616.
DOI URL |
[31] |
K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53 (2007) 117-166.
DOI URL |
[32] | K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, William Andrew, 2012. |
[33] |
M. Troyon, L. Wang, Appl. Surf. Sci. 103 (1996) 517-523.
DOI URL |
[34] |
H. Wu, Y. Wang, Q. Zhong, M. Sheng, H. Du, Z. Li, J. Electroanal. Chem. 663 (2011) 59-66.
DOI URL |
[35] |
A. Dhawan, V. Zaporojtchenko, F. Faupel, S.K. Sharma, J. Mater. Sci. 42 (2007) 9037-9044.
DOI URL |
[36] | K.R. Lim, C.E. Kim, Y.S. Yun, W.T. Kim, A. Soon, D.H. Kim, Sci. Rep. 5 (2015) 1-8. |
[37] |
R.P. Oleksak, E.B. Hostetler, B.T. Flynn, J.M. McGlone, N.P. Landau, J.F. Wager, W.F. Stickle, G.S. Herman, Thin Solid Films 595 (2015) 209-213.
DOI URL |
[38] |
X. Sun, S. Schneider, U. Geyer, W.L. Johnson, M.A. Nicolet, J. Mater. Res. 11 (1996) 2738-2743.
DOI URL |
[39] |
S. Anuchai, S. Phanichphant, D. Tantraviwat, P. Pluengphon, T. Bovornrata-naraks, B. Inceesungvorn, J. Colloid Interface Sci. 512 (2018) 105-114.
DOI URL |
[40] |
X. Chen, Y. Huang, K. Zhang, X. Feng, M. Wang, Electrochim. Acta 259 (2018) 131-142.
DOI URL |
[41] |
X. Chen, Y. Huang, K. Zhang, X. Feng, C. Wei, J. Alloy. Compd. 690 (2017) 765-770.
DOI URL |
[42] |
L. Zhu, H. Lu, D. Hao, L. Wang, Z. Wu, L. Wang, P. Li, J. Ye, ACS Appl. Mater. Interfaces 9 (2017) 38537-38544.
DOI URL |
[43] |
M. Manikandan, T. Tanabe, P. Li, S. Ueda, G.V. Ramesh, R. Kodiyath, J. Wang, T. Hara, A. Dakshanamoorthy, S. Ishihara, ACS Appl. Mater. Interfaces 6 (2014) 3790-3793.
DOI URL |
[44] |
S.K. Sharma, T. Strunskus, H. Ladebusch, V. Zaporojtchenko, F. Faupel, J. Mater. Sci. 43 (2008) 5495-5503.
DOI URL |
[45] |
A.A. Marakushev, N.I. Bezmen, Int. Geol. Rev. 13 (1971) 1781-1794.
DOI URL |
[46] | D.R. Lide, CRC Handbook of Chemistry and Physics, CRC press, 2004. |
[47] | M.W. Chase, J. Phys. Chem. Ref. Data, Monograph 9 (1998) 1-1951. |
[48] |
S. Cahen, N. David, J.M. Fiorani, A. Maıtre, M. Vilasi, Thermochim. Acta 403 (2003) 275-285.
DOI URL |
[49] |
P. Mohanty, N.C. Mishra, R.J. Choudhary, A. Banerjee, T. Shripathi, N.P. Lalla, S. Annapoorni, C. Rath, J. Phys. D. Appl. Phys. 45 (2012) 325301.
DOI URL |
[50] |
W. Xia, H. Qian, X. Zeng, J. Sun, P. Wang, M. Luo, J. Dong, RSC Adv. 9 (2019) 23334-23342.
DOI URL |
[51] |
S. Sharma, S. Chaudhary, S.C. Kashyap, S.K. Sharma, J. Appl. Phys. 109 (2011) 83905.
DOI URL |
[52] |
A. Seko, A. Togo, F. Oba, I. Tanaka, Phys. Rev. Lett. 100 (2008) 45702.
DOI URL |
[53] |
F. Zhang, Y. Lian, M. Gu, J. Yu, T.B. Tang, J. Phys. Chem. C 121 (2017) 16006-16011.
DOI URL |
[54] |
K. Fan, F. Li, L. Wang, Q. Daniel, E. Gabrielsson, L. Sun, Phys. Chem. Chem. Phys. 16 (2014) 25234-25240.
DOI PMID |
[1] | Yongqiang Ren, Xiuyan Li, Yinan Wang, Qinghua Gong, Shaonan Gu, Tingting Gao, Xuefeng Sun, Guowei Zhou. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material [J]. J. Mater. Sci. Technol., 2022, 102(0): 186-194. |
[2] | Xin Li, Guangcun Shan, C.H. Shek. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability [J]. J. Mater. Sci. Technol., 2022, 103(0): 113-120. |
[3] | Hongbo Zhou, Vitaly Khonik, Gerhard Wilde. On the shear modulus and thermal effects during structural relaxation of a model metallic glass: Correlation and thermal decoupling [J]. J. Mater. Sci. Technol., 2022, 103(0): 144-151. |
[4] | Yan Xing, Wenqing Dan, Yicun Fan, Xing'ao Li. Low temperature synthesis of high-entropy (Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers by a novel electrospinning method [J]. J. Mater. Sci. Technol., 2022, 103(0): 215-220. |
[5] | Kun Li, Luxin Liang, Peng Du, Zeyun Cai, Tao Xiang, Hiroyasu Kanetaka, Hong Wu, Guoqiang Xie. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application [J]. J. Mater. Sci. Technol., 2022, 103(0): 73-83. |
[6] | Q. Zhang, F.W. Tang, Z. Zhao, Z.R. Nie, X.Y. Song. Surface modification of tungsten oxide by oxygen vacancies for hydrogen adsorption [J]. J. Mater. Sci. Technol., 2022, 117(0): 23-35. |
[7] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[8] | Shuangqin Chen, Mai Li, Qingmin Ji, Tao Feng, Si Lan, KeFu Yao. Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment [J]. J. Mater. Sci. Technol., 2022, 117(0): 49-58. |
[9] | Kena Wu, Xiaonan Wei, Deng Li, Peng Hu. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting [J]. J. Mater. Sci. Technol., 2022, 99(0): 270-276. |
[10] | Z.R. Xu, J.C. Qiao, J. Wang, E. Pineda, D. Crespo. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep [J]. J. Mater. Sci. Technol., 2022, 99(0): 39-47. |
[11] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[12] | Langting Zhang, Yajuan Duan, Eloi Pineda, Hidemi Kato, Jean-Marc Pelletier, Jichao Qiao. Effect of physical aging and cyclic loading on power-law creep of high-entropy metallic glass [J]. J. Mater. Sci. Technol., 2022, 115(0): 1-9. |
[13] | Xiaolin Hu, Tongxin Yang, Zuguang Yang, Zongyang Li, Ronghua Wang, Meng Li, Guangsheng Huang, Bin Jiang, Chaohe Xu, Fusheng Pan. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting [J]. J. Mater. Sci. Technol., 2022, 115(0): 19-28. |
[14] | Xinqiang Wang, Bin Wang, Yuanfu Chen, Mengya Wang, Qi Wu, Katam Srinivas, Bo Yu, Xiaojuan Zhang, Fei Ma, Wanli Zhang. Fe2P nanoparticles embedded on Ni2P nanosheets as highly efficient and stable bifunctional electrocatalysts for water splitting [J]. J. Mater. Sci. Technol., 2022, 105(0): 266-273. |
[15] | Devashish Rajpoot, R. Lakshmi Narayan, Long Zhang, Punit Kumar, Haifeng Zhang, Parag Tandaiya, Upadrasta Ramamurty. Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite [J]. J. Mater. Sci. Technol., 2022, 106(0): 225-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||