J. Mater. Sci. Technol. ›› 2022, Vol. 109: 228-244.DOI: 10.1016/j.jmst.2021.08.067
• Research Article • Previous Articles Next Articles
Donghai Lia, Binbin Wanga, Liangshun Luoa,*(), Xuewen Lib, Yanjin Xuc, BinQiang Lia, Diween Hawezyd, Liang Wanga, Yanqing Sua,*(
), Jingjie Guoa, Hengzhi Fua
Received:
2021-05-27
Revised:
2021-08-25
Accepted:
2021-08-25
Published:
2022-05-20
Online:
2021-11-01
Contact:
Liangshun Luo,Yanqing Su
About author:
suyq@hit.edu.cn (Y. Su).Donghai Li, Binbin Wang, Liangshun Luo, Xuewen Li, Yanjin Xu, BinQiang Li, Diween Hawezy, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu. Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites[J]. J. Mater. Sci. Technol., 2022, 109: 228-244.
Fig. 2. XRD patterns of the as-prepared Ti2AlNb/TiAl laminated composites hot pressed at different processing parameters. (a) 980 °C/2 h/65 MPa (P1). (b) 1050 °C/1.5 h/65 MPa (P2). (c) 1050 °C/1.5 h/65 MPa (P3). (d) 1050 °C/2 h/65 MPa (P4). (e) 1120 °C/2 h/65 MPa (P5).
Fig. 4. BSE images of the interfacial region of the composite fabricated at (a) P1, (b) P2, (c) P3, (d) P4 and (e) P5. The corresponding element distribution of Ti, Al, Nb and Cr by EDS line scanning analysis along the yellow dotted line are shown in (a1), (b1), (c1) (d1) and (e1), respectively.
Number | Ti (at.%) | Al (at.%) | Nb (at.%) | Cr (at.%) | Possible phase |
---|---|---|---|---|---|
1 | 44.32 | 24.56 | 29.18 | 1.94 | β/B2 |
2 | 35.54 | 27.99 | 35.16 | 1.3 | Al(Nb,Ti)2 |
3 | 57.24 | 26.99 | 14.63 | 1.14 | α2 |
4 | 54.62 | 40.78 | 2.40 | 2.21 | γ |
5 | 35.54 | 26.61 | 36.57 | 1.29 | Al(Nb,Ti)2 |
6 | 47.49 | 22.37 | 28.72 | 1.42 | β/B2 |
7 | 54.00 | 29.22 | 14.61 | 2.17 | α2 |
8 | 61.76 | 21.88 | 15.95 | 0.41 | α2 |
9 | 47.67 | 22.83 | 27.16 | 2.34 | β/B2 |
10 | 51.03 | 22.30 | 25.22 | 1.45 | O |
11 | 60.29 | 27.92 | 10.02 | 1.78 | α2 |
12 | 63.43 | 30.17 | 5.34 | 1.05 | α2 |
13 | 50.14 | 21.98 | 26.28 | 1.60 | O |
14 | 62.9 | 28.79 | 7.17 | 1.14 | α2 |
15 | 52.00 | 21.53 | 25.42 | 1.06 | O |
16 | 62.00 | 30.93 | 5.79 | 1.27 | α2 |
17 | 64.03 | 29.74 | 5.26 | 0.97 | α2 |
Table 1. SEM-EDS results of composition analysis for different numbers marked in Fig. 4.
Number | Ti (at.%) | Al (at.%) | Nb (at.%) | Cr (at.%) | Possible phase |
---|---|---|---|---|---|
1 | 44.32 | 24.56 | 29.18 | 1.94 | β/B2 |
2 | 35.54 | 27.99 | 35.16 | 1.3 | Al(Nb,Ti)2 |
3 | 57.24 | 26.99 | 14.63 | 1.14 | α2 |
4 | 54.62 | 40.78 | 2.40 | 2.21 | γ |
5 | 35.54 | 26.61 | 36.57 | 1.29 | Al(Nb,Ti)2 |
6 | 47.49 | 22.37 | 28.72 | 1.42 | β/B2 |
7 | 54.00 | 29.22 | 14.61 | 2.17 | α2 |
8 | 61.76 | 21.88 | 15.95 | 0.41 | α2 |
9 | 47.67 | 22.83 | 27.16 | 2.34 | β/B2 |
10 | 51.03 | 22.30 | 25.22 | 1.45 | O |
11 | 60.29 | 27.92 | 10.02 | 1.78 | α2 |
12 | 63.43 | 30.17 | 5.34 | 1.05 | α2 |
13 | 50.14 | 21.98 | 26.28 | 1.60 | O |
14 | 62.9 | 28.79 | 7.17 | 1.14 | α2 |
15 | 52.00 | 21.53 | 25.42 | 1.06 | O |
16 | 62.00 | 30.93 | 5.79 | 1.27 | α2 |
17 | 64.03 | 29.74 | 5.26 | 0.97 | α2 |
Fig. 5. EBSD analysis for the composites separately fabricated from P3 to P5. (a-c) Band contrast and phase distribution map from P3 to P5. (a1-c1) The histograms show the phase content and grain size in the Ti2AlNb alloy from P3 to P5, respectively.
Fig. 6. EBSD analysis of the composite fabricated at P3. (a) EBSD phase distribution map of the composite across the interface. (b) The magnified region A includes three interfaces marked by number 1 to 3. (b1-b3) The corresponding crystallographic orientation relationships among these phases in (b) are analyzed by pole figures. (c) Pole figures of the whole α2 layer (region II) and total γ phases in TiAl alloy are used to certain the crystallographic orientation relationship between α2 phase and γ phase. (d) The inverse pole figure shows the orientation distribution of O phase in region I and α2 phase in region Ⅱ. (e) The point-to-point and point-to-origin misorientation profiles are separately plotted along the line B in (a).
Fig. 7. Analysis of interface thickness and the corresponding diffusion kinetics. (a) The interface thickness including the total interface thickness, thickness of region I and that of region Ⅱ are calculated statistically. (b) Logarithm analysis of diffusion time t (s) and average thickness ∆x (m) of the interface in the composite fabricated at 1050 °C for different holding time. Note that the solid lines in different color in (b) are attained by linear regression analysis. Error bars are standard deviations of the mean.
Fig. 8. Microstructure evolution analysis for composited fabricated from P1 to P5. (a) Ti-Al system phase diagram[49]. (b) Ti-22Al-xNb ternary alloy phase diagram [50]. (c), (d) and (e) Isothermal phase diagrams of Ti-Al-Nb ternary system at 980 °C, 1050 °C and 1120 °C is separately calculated by the Pandat Software.
Fig. 9. STEM and TEM analysis for the composite processed at P3. (a) HADDF image shows the microstructure of the composite across the interface region. (a1-a4) HADDF mapping presents the element distribution. (b) The composition of position A is calculated by point analysis and the concrete element content in atomic percent is displayed at the top right corner. (c) The SAED patterns of position A ((Ti, Nb)2Al phase).
Empty Cell | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|
Density/(g/cm3) | 4.027±0.073 | 4.268±0.081 | 4.437±0.015 | 4.478± 0.011 | 4.517± 0.012 |
Relative density (%) | 88.253 | 93.535 | 97.239 | 98.137 | 98.992 |
Table 2. Densities and relative densities of the composites fabricated from P1 to P5.
Empty Cell | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|
Density/(g/cm3) | 4.027±0.073 | 4.268±0.081 | 4.437±0.015 | 4.478± 0.011 | 4.517± 0.012 |
Relative density (%) | 88.253 | 93.535 | 97.239 | 98.137 | 98.992 |
Fig. 10. Tensile properties of Ti2AlNb/TiAl laminated composites tested at room temperature. (a) The tensile stress-strain curves from P1 to P5. The inset in (a) is the detailed sample size for tensile test. (b) Statistic results of the tensile strength and the total elongation in (a). Error bars are standard deviations of the mean.
Fig. 12. Tensile properties of Ti2AlNb/TiAl laminated composite tested at 750 °C and the corresponding fracture morphologies from P1 to P5. (a) Tensile stress-strain curve of the composites tested at 750 °C. (b-f) Corresponding fracture morphologies from P1 to P5, respectively.
Empty Cell | σ0.2 (MPa) | σb (MPa) | EL (%) | TEL (%) |
---|---|---|---|---|
P1 | 372.05 | 438.09 | 2.01 | 6.47 |
P2 | 453.92 | 513.63 | 2.47 | 7.25 |
P3 | 401.09 | 539.71 | 5.80 | 10.34 |
P4 | 466.06 | 549.52 | 3.01 | 7.85 |
P5 | 472.63 | 562.32 | 2.8 | 8.51 |
TiAl base alloy | 367.20 | 431.95 | 0.86 | 2.84 |
Ti2AlNb base alloy | 504.79 | 611.43 | 9.54 | 12 |
Table 3. Tensile properties at 750 °C for the composites fabricated from P1 to P5.
Empty Cell | σ0.2 (MPa) | σb (MPa) | EL (%) | TEL (%) |
---|---|---|---|---|
P1 | 372.05 | 438.09 | 2.01 | 6.47 |
P2 | 453.92 | 513.63 | 2.47 | 7.25 |
P3 | 401.09 | 539.71 | 5.80 | 10.34 |
P4 | 466.06 | 549.52 | 3.01 | 7.85 |
P5 | 472.63 | 562.32 | 2.8 | 8.51 |
TiAl base alloy | 367.20 | 431.95 | 0.86 | 2.84 |
Ti2AlNb base alloy | 504.79 | 611.43 | 9.54 | 12 |
Fig. 13. Schematic diagram of deformation behaviors of the composites fabricated from P1 to P5. The Poisson ratio (μ) for the Ti2AlNb alloy, TiAl alloy and α2-Ti3Al alloy are 0.33, 0.23 and 0.29 [67,68], respectively. σ1 represents the tensile stress and the σ2 is the extra stress induced by the incompatible deformation ability over the component layers.
Fig. 14. Fracture toughness test of the composites in AO and DO at room temperature from P1 to P5. Error bars are the standard deviations of the mean.
Fig. 15. Crack propagation features across the laminated structure in the Ti2AlNb/TiAl laminated composites with the notches of the fracture toughness specimens being cut perpendicular to the hot-pressing direction (AO, arrester orientation). (a) P1, (b) P2, (c) P3, (d) P4, (e) P5.
Fig. 16. Crack propagation characteristics on the surface of the TiAl alloy in the composites with the notches of fracture toughness specimens being cut in the direction parallel to the hot-pressing direction (DO, divider orientation). (a) P1, (b) P2, (c) P3, (d) P4, (e) P5.
[1] |
B.H. Kear, E.R. Thompson, Science 208 (1980) 847-856.
PMID |
[2] |
M. Yamaguchi, H. Inui, K. Ito, Acta Mater 48 (2000) 307-322.
DOI URL |
[3] |
T. Tetsui, K. Shindo, S. Kobayashi, M. Takeyama, Scr. Mater. 47 (2002) 399-403.
DOI URL |
[4] |
H. Wu, B.C. Jin, L. Geng, G.H. Fan, X.P. Cui, M. Huang, R.M. Hicks, S. Nutt, Metall. Mater. Trans. A 46 (2015) 3803-3807.
DOI URL |
[5] |
J. Inoue, S. Nambu, Y. Ishimoto, T. Koseki, Scr. Mater. 59 (2008) 1055-1058.
DOI URL |
[6] |
H. Wang, T. Harrington, C. Zhu, K.S. Vecchio, Acta Mater 175 (2019) 445-456.
DOI URL |
[7] |
G.M. Luz, J.F. Mano, Philos. Trans. R. Soc. A 367 (2009) 1587-1605.
DOI URL |
[8] |
H.D. Espinosa, J.E. Rim, F. Barthelat, M.J. Buehler, Prog. Mater. Sci. 54 (2009) 1059-1100.
DOI URL |
[9] |
H.S. Liu, B. Zhang, G.P. Zhang, Scr. Mater. 64 (2011) 13-16.
DOI URL |
[10] |
H.S. Liu, B. Zhang, G.P. Zhang, Scr. Mater. 65 (2011) 891-894.
DOI URL |
[11] |
L.M. Peng, H. Li, J.H. Wang, Mater. Sci. Eng., A 406 (2005) 309-318.
DOI URL |
[12] |
L.M. Peng, J.H. Wang, H. Li, J.H. Zhao, L.H. He, Scr. Mater. 52 (2005) 243-248.
DOI URL |
[13] |
S. Lyu, Y. Sun, L. Ren, W. Xiao, C. Ma, Intermetallics 90 (2017) 16-22.
DOI URL |
[14] |
S.H. Qin, X.P. Cui, Z. Tian, L. Geng, B.X. Liu, J.E. Zhang, J.F. Chen, J. Alloys Compd. 700 (2017) 122-129.
DOI URL |
[15] |
W. Wallgram, T. Schmlzer, L. Cha, G. Das, H. Clemens, Int. J. Mater. Res. 100 (2009) 1021-1030.
DOI URL |
[16] |
H. Clemens, H. Kestler, Adv. Eng. Mater. 2 (2000) 551-570.
DOI URL |
[17] |
H. Clemens, S. Mayer, Adv. Eng. Mater. 15 (2013) 191-215.
DOI URL |
[18] |
R. Ma, Z. Liu, W. Wang, G. Xu, W. Wang, Mater. Charact. 164 (2020) 110321.
DOI URL |
[19] |
A. Taotao, N. Qunfei, D. Zhifeng, L. Wenhu, D. Hongfeng, J. Ran, Z. Xiangyu, Intermetallics 121 (2020) 106774.
DOI URL |
[20] | W. Sun, H. Fan, F. You, F. Kong, X. Wang, Y. Chen, Mater. Sci. Eng. A 782 (2020). |
[21] |
W. Sun, F. Yang, F. Kong, X. Wang, Y. Chen, Mater. Charact. 144 (2018) 173-181.
DOI URL |
[22] |
Z. Liu, R. Ma, G. Xu, W. Wang, J. Liu, Mater. Lett. 263 (2020) 127210.
DOI URL |
[23] | H. Ding, X. Cui, N. Gao, Y. Sun, Y. Zhang, L. Huang, L. Geng, J. Mater. Sci. Tech-nol. 62 (2021) 221-233. |
[24] | G. Lütjering, J.C. Williams, Titanium, Springer Berlin Heidelberg 2007. |
[25] |
R.R. Boyer, Mater. Sci. Eng. A 213 (1996) 103-114.
DOI URL |
[26] |
Q. Bignon, F. Martin, Q. Auzoux, F. Miserque, M. Tabarant, L. Latu-Romain, Y. Wouters, Corros. Sci. 150 (2019) 32-41.
DOI URL |
[27] |
M. Zhang, M. Shen, L. Xin, X. Ding, S. Zhu, F. Wang, Corros. Sci. 112 (2016) 36-43.
DOI URL |
[28] |
J. Jia, W. Sun, W. Peng, Z. Yang, Y. Xu, X. Zhong, W. Liu, J. Luo, Adv. Powder Technol. 31 (2020) 1963-1974.
DOI URL |
[29] |
Y. Zheng, W. Zeng, D. Li, X. Liang, J. Zhang, X. Ma, Mater. Sci. Eng. A 696 (2017) 529-535.
DOI URL |
[30] | C. Leyens, M. Peters, Wiley-VCH (2003) 69-70. |
[31] |
Y. Zheng, W. Zeng, D. Li, Q. Zhao, X. Liang, J. Zhang, X. Ma, J. Alloys Compd. 709 (2017) 511-518.
DOI URL |
[32] |
M. Dadé, V.A. Esin, L. Nazé, P. Sallot, Corros. Sci. 148 (2019) 379-387.
DOI URL |
[33] |
P. Zhang, W. Zeng, Y. Zheng, J. Xu, X. Liang, Y. Zhao, Mater. Sci. Eng. A 796 (2020) 140009.
DOI URL |
[34] | R.M. Christensen, J.J. McCoy, J. Appl. Mech. 47 (1980) 460-461. |
[35] |
K.S. Abdel Halim, M. Bahgat, H.A. El-Kelesh, M.I. Nasr, Ironmak. Steelmak. 36 (2013) 631-640.
DOI URL |
[36] |
L. Zhu, J. Li, B. Tang, Y. Peng, H. Kou, X. Xue, Mater. Chem. Phys. 220 (2018) 216-224.
DOI URL |
[37] |
L. Zhu, J. Li, B. Tang, Y. Liu, M. Zhang, L. Li, H. Kou, Vacuum 164 (2019) 140-148.
DOI URL |
[38] |
H. Zhu, W. Sun, F. Kong, X. Wang, Z. Song, Y. Chen, Mater. Sci. Eng. A 742 (2019) 704-711.
DOI URL |
[39] | H. Berlin, in: Interdiffusion and Kirkendall Effect, Springer Berlin Heidelberg, 2007, pp. 161-177. |
[40] | J. Zou, Y. Cui, Y. Rui, J. Mater. Sci. Technol. (2009) 819-824. |
[41] |
A. Denquin, S. Naka, Acta Mater 44 (1996) 343-352.
DOI URL |
[42] |
Y. Wang, K.S. Vecchio, Mater. Sci. Eng. A 649 (2016) 325-337.
DOI URL |
[43] |
D. Banerjee, J.C. Williams, Acta Mater 61 (2013) 844-879.
DOI URL |
[44] |
A. Hellwig, M. Palm, G. Inden, Intermetallics 6 (1998) 79-94.
DOI URL |
[45] | L. Kaufman, H. Nesor, V, Calphad 2 (1978) 325-348. |
[46] |
I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida, Acta Mater 48 (2000) 3113-3123.
DOI URL |
[47] |
U.R. Kattner, J.C. Lin, Y.A. Chang, Metall. Mater. Trans. A 23 (1992) 2081-2090.
DOI URL |
[48] |
V. Chaumat, C. Colinet, F. Moret, J. Phase Equilib. 20 (1999) 389-398.
DOI URL |
[49] |
C. McCullough, J.J. Valencia, C.G. Levi, R. Mehrabian, Acta Mater 37 (1989) 1321-1336.
DOI URL |
[50] |
C.J. Boehlert, J. Phase Equilib. 20 (1999) 101-108.
DOI URL |
[51] |
U.R. Kattner, W.J. Boettinger, Mater. Sci. Eng. A 152 (1992) 9-17.
DOI URL |
[52] |
X.W. Du, J. Zhu, X. Zhang, Z.Y. Cheng, Y.W. Kim, Mater. Sci. Eng. A 291 (2000) 131-135.
DOI URL |
[53] |
A.V. Kartavykh, E.A. Asnis, N.V. Piskun, I.I. Statkevich, M.V. Gorshenkov, A.V. Korotitskiy, Mater. Lett. 188 (2017) 88-91.
DOI URL |
[54] |
S.A. Court, J.P.A. Lofvander, M.H. Loretto, H.L. Fraser, Philos. Mag.. 61 (1990) 109-139.
DOI URL |
[55] | X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 7197-7201. |
[56] |
H. Wu, G.H. Fan, M. Huang, L. Geng, X.P. Cui, H.L. Xie, Int. J. Plast. 89 (2017) 96-109.
DOI URL |
[57] |
J.C. Pang, G.H. Fan, X.P. Cui, A.B. Li, L. Geng, Z.Z. Zheng, Q.W. Wang, Mater. Sci. Eng. A 582 (2013) 294-298.
DOI URL |
[58] |
H. Wu, G. Fan, Prog. Mater. Sci. 113 (2020) 100675.
DOI URL |
[59] |
C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Hoppel, M. Goken, X.L. Wu, H.J. Gao, Y.T. Zhu, Mater. Today 21 (2018) 713-719.
DOI URL |
[60] |
X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Acta Mater 116 (2016) 43-52.
DOI URL |
[61] | F. Popille, J. Douin, J. Phys. IV 6 (1996) 211-216. |
[62] |
F.H. Froes, C. Suryanarayana, D. Eliezer, J. Mater. Sci. 27 (1992) 5113-5140.
DOI URL |
[63] |
G.H. Fan, Q.W. Wang, Y. Du, L. Geng, W. Hu, X. Zhang, Y.D. Huang, Mater. Sci. Eng. A 590 (2014) 318-322.
DOI URL |
[64] |
J. Kumpfert, Adv. Eng. Mater. 3 (2001) 851-864.
DOI URL |
[65] |
S. Djanarthany, J.C. Viala, J. Bouix, Mater. Chem. Phys. 72 (2001) 301-319.
DOI URL |
[66] |
S.M.L. Sastry, H.A. Lipsitt, Metall. Mater. Trans. A 8 (1977) 1543-1552.
DOI URL |
[67] | H.F. Appel, J. Paul, M. Oehring, in: Gamma Titanium Aluminide Alloys, Wi-ley-VCH 2011, pp. 25-27. |
[68] | J. Wu, R. Guo, L. Xu, Z. Lu, Y. Cui, R. Yang, J. Mater. Sci. Technol. 33 (2017) 172-178. |
[69] |
W. Sun, F. You, F. Kong, X. Wang, Y. Chen, J. Alloys Compd. 820 (2020) 153088.
DOI URL |
[70] |
W. Sun, F. You, F. Kong, X. Wang, Y. Chen, Intermetallics 118 (2020) 106684.
DOI URL |
[71] |
C. Lin, F. Jiang, Y. Han, E. Wang, D. Yuan, C. Guo, J. Alloys Compd. 743 (2018) 52-62.
DOI URL |
[72] |
D.R. Lesuer, C.K. Syn, O.D. Sherby, J. Wadsworth, J.J. Lewandowski, W.H. Hunt, Int. Mater. Rev. 41 (1996) 169-197.
DOI URL |
[73] |
S.D. Antolovich, R.W. Armstrong, Prog. Mater. Sci. 59 (2014) 1-160.
DOI URL |
[74] |
H. Wu, G.H. Fan, X.P. Cui, L. Geng, F. Yuan, J.C. Pang, L.S. Wei, M. Huang, Mater. Sci. Eng. A 585 (2013) 439-443.
DOI URL |
[75] |
M.E. Launey, R.O. Ritchie, Adv. Mater. 21 (2009) 2103-2110.
DOI URL |
[76] | A.A. Griffith, T. R. Soc. A 221 (1920) 163-198. |
[77] |
A. Taotao, N. Qunfei, D. Zhifeng, L. Wenhu, D. Hongfeng, J. Ran, Z. Xiangyu, Intermetallics 121 (2020) 106774.
DOI URL |
[1] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[2] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
[3] | Seungmi Kwak, Jaehwang Kim, Hongsheng Ding, Xuesong Xu, Ruirun Chen, Jingjie Guo, Hengzhi Fu. Using multiple regression analysis to predict directionally solidified TiAl mechanical property [J]. J. Mater. Sci. Technol., 2022, 104(0): 285-291. |
[4] | Mehmet R. Abul, Robert F. Cochrane, Andrew M. Mullis. Microstructural development and mechanical properties of drop tube atomized Al-2.85 wt% Fe [J]. J. Mater. Sci. Technol., 2022, 104(0): 41-51. |
[5] | Shengfeng Zhou, Min Xie, Changyi Wu, Yanliang Yi, Dongchu Chen, Lai-Chang Zhang. Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms [J]. J. Mater. Sci. Technol., 2022, 104(0): 81-87. |
[6] | Zhengyi Mao, Mengke Huo, Fucong Lyu, Yongsen Zhou, Yu Bu, Lei Wan, Lulu Pan, Jie Pan, Hui Liu, Jian Lu. Nacre-liked material with tough and post-tunable mechanical properties [J]. J. Mater. Sci. Technol., 2022, 114(0): 172-179. |
[7] | Tianbing He, Tiwen Lu, Daniel Şopu, Xiaoliang Han, Haizhou Lu, Kornelius Nielsch, Jürgen Eckert, Nevaf Ciftci, Volker Uhlenwinkel, Konrad Kosiba, Sergio Scudino. Mechanical behavior and deformation mechanism of shape memory bulk metallic glass composites synthesized by powder metallurgy [J]. J. Mater. Sci. Technol., 2022, 114(0): 42-54. |
[8] | Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling [J]. J. Mater. Sci. Technol., 2022, 115(0): 40-51. |
[9] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[10] | Wu Qi, Wenrui Wang, Xiao Yang, Lu Xie, Jiaming Zhang, Dongyue Li, Yong Zhang. Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 109(0): 76-85. |
[11] | Congying Xiang, Min Shen, Chongze Hu, Lok Wing Wong, Hongbo Nie, Huasheng Lei, Jian Luo, Jiong Zhao, Zhiyang Yu. Atomistic observation of in situ fractured surfaces at a V-doped WC-Co interface [J]. J. Mater. Sci. Technol., 2022, 110(0): 103-108. |
[12] | Zhe Shen, Zhongze Lin, Peijian Shi, Jiale Zhu, Tianxiang Zheng, Biao Ding, Yifeng Guo, Yunbo Zhong. Enhanced electrical, mechanical and tribological properties of Cu-Cr-Zr alloys by continuous extrusion forming and subsequent aging treatment [J]. J. Mater. Sci. Technol., 2022, 110(0): 187-197. |
[13] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[14] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[15] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||