J. Mater. Sci. Technol. ›› 2022, Vol. 109: 221-227.DOI: 10.1016/j.jmst.2021.08.058
• Research Article • Previous Articles Next Articles
Jiayong Zhanga,b, Hongwu Zhanga, Qian Lia, Lizi Chengb, Hongfei Yea, Yonggang Zhenga,*(), Jian Lub,c,**(
)
Received:
2021-03-31
Revised:
2021-07-07
Accepted:
2021-08-02
Published:
2022-05-20
Online:
2021-10-28
Contact:
Yonggang Zheng,Jian Lu
About author:
** Department of Mechanical Engineering, Shenyang Na-tional Laboratory for Materials Science, Greater Bay Joint Division, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. E-mail addresses: jian.lu@cityu.edu.hk (J. Lu).Jiayong Zhang, Hongwu Zhang, Qian Li, Lizi Cheng, Hongfei Ye, Yonggang Zheng, Jian Lu. The physical origin of observed repulsive forces between general dislocations and twin boundaries in FCC metals: An atom-continuum coupling study[J]. J. Mater. Sci. Technol., 2022, 109: 221-227.
Fig. 1. Elastic interaction between a single non-screw dislocation and a single TB. Schematic representation of the coupling model is shown in the inset. Atoms in the inner and bridge region are color-coded according to the stress ${{\sigma }_{xz}}$ caused by a non-screw dislocation. The energy variation of the system as the dislocation–TB distance changes for (a) copper and (b) nickel. The lines with black square marks represent the results of region A calculated with the atomistic simulation, while others show the total energy and the variable n is the ratio of the thicknesses of continuum region C to the size of region A.
Materials | Elastic constant (GPa) | ||
---|---|---|---|
C11 | C12 | C44 | |
Copper | 169.89214 | 122.59543 | 76.20569 |
Nickel | 247.84734 | 147.82042 | 124.8346 |
Table 1. Elastic constants calibrated with the EAM potentials.
Materials | Elastic constant (GPa) | ||
---|---|---|---|
C11 | C12 | C44 | |
Copper | 169.89214 | 122.59543 | 76.20569 |
Nickel | 247.84734 | 147.82042 | 124.8346 |
Fig. 2. Elastic interaction between two non-screw dislocations with the same Burgers vector. Schematic representation of the coupling model is shown in the inset. Atoms in the inner and bridge region are color-coded according to the stress ${{\sigma }_{xz}}$ caused by a non-screw dislocation. The energy variation of the system as the distance between dislocations changes: (a) copper and (b) nickel. The lines with black square marks represent the results of the inner region calculated with the atomistic simulation, while others show the total energy and the variable n is the ratio of the thicknesses of region C to the size of region A.
Fig. 3. Comparison between the elastic interaction of two non-screw dislocations and the interaction of one dislocation and one TB for (a) copper and (b) nickel. The curves for dislocation-dislocation interaction are manually offset upwards by 0.1 concerning the curve for dislocation-TB interaction. The local atomistic configuration of dislocations and TBs in different coupling models are shown in the insets of (a).
Fig. 4. (a) Stress-dependent distance between a blocked heading dislocation and the following dislocation with/without the presence of TBs. (b) Schematic representation of the model used in the simulation. The symbol f represents the Peach-Koehler force due to the applied shear stress. (c,d) Configurations of dislocations pileup caused by (c) a TB or (d) an immobile dislocation. Atoms are color-coded by the atomistic shear stress σyz.
Fig. 5. (a) Schematic diagram of the dislocation line, its Burgers vector and slipping plane. The xoz plane is assumed to be a TB. (b) Variation of factor $\bar{E}$ as the Burgers vector changes its direction. Values of $\bar{E}$ are in the units of 10-3 eV/Å.
[1] |
L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Science 304 (2004) 422-426.
DOI URL |
[2] |
L. Lu, X.H. Chen, X. Huang, K. Lu, Science 323 (2009) 607-610.
DOI PMID |
[3] |
Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, K. Lu, Scr. Mater. 52 (2005) 989-994.
DOI URL |
[4] |
Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, H. Gleiter, Scr. Mater. 54 (2006) 1163-1168.
DOI URL |
[5] |
Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, H. Hahn, Acta Mater. 56 (2008) 1126-1135.
DOI URL |
[6] |
L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh, Acta Mater. 53 (2005) 2169-2179.
DOI URL |
[7] |
T. Zhu, H.J. Gao, Scr. Mater. 66 (2012) 843-848.
DOI URL |
[8] |
Y.B. Wang, B. Wu, M.L. Sui, Appl. Phys. Lett. 93 (2008) 041906.
DOI URL |
[9] |
Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee Jr, A.V. Hamza, Nat. Mater. 12 (2013) 697-702.
DOI URL |
[10] |
X.Y. Li, Y.J. Wei, L. Lu, K. Lu, H.J. Gao, Nature 464 (2010) 877-880.
DOI URL |
[11] |
Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Nature 551 (2017) 214-217.
DOI URL |
[12] |
Z. Cheng, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Science 362 (2018) eaau1925.
DOI URL |
[13] |
Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskes, S.N. Mathaudhu, Acta Mater. 59 (2011) 812-821.
DOI URL |
[14] |
Z.M. Chen, Z.H. Jin, H.J. Gao, Phys. Rev. B 75 (2007) 212104.
DOI URL |
[15] |
D.A. Wei, M. Zaiser, Z.Q. Feng, G.Z. Kang, H.D. Fan, X. Zhang, Acta Mater. 176 (2019) 289-296.
DOI URL |
[16] |
H. Zhou, C. Huang, X. Sha, L. Xiao, X. Ma, H.W. Höppel, M. Göken, X. Wu, K. Ameyama, X. Han, Y. Zhu, Mater. Res. Lett. 7 (2019) 376-382.
DOI |
[17] |
N.V. Malyar, J.S. Micha, G. Dehm, C. Kirchlechner, Acta Mater. 129 (2017) 91-97.
DOI URL |
[18] |
M. Dao, L. Lu, Y.F. Shen, S. Suresh, Acta Mater. 54 (2006) 5421-5432.
DOI URL |
[19] |
L.L. Zhu, H.H. Ruan, X.Y. Li, M. Dao, H.J. Gao, J. Lu, Acta Mater. 59 (2011) 5544-5557.
DOI URL |
[20] |
L. Zhang, W. Mao, M. Liu, Y. Shibuta, Mech. Mater. 141 (2020) 103266.
DOI URL |
[21] |
Q. Fang, F. Sansoz, Acta Mater. 123 (2017) 383-393.
DOI URL |
[22] | J.P. Hirth, J. Lothe, Mura T, Theory of Dislocations, J. Appl. Mech. 50 (1983) 476-477. |
[23] |
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63 (2001) 224106.
DOI URL |
[24] |
Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59 (1999) 3393-3407.
DOI URL |
[25] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[26] |
A. Stukowski, Model. Simul. Mater. Sci. Eng. 18 (2009) 015012.
DOI URL |
[27] | T.C.T. Ting, Anisotropic Elasticity: Theory and Applications, Oxford University Press, London, 1996. |
[28] |
A.Y. Chen, L.L. Zhu, L.G. Sun, J.B. Liu, H.T. Wang, X.Y. Wang, J.H. Yang, J. Lu, Nat. Commun. 10 (2019) 1403.
DOI PMID |
[29] | K.J. Bathe, Finite Element Procedures, Prentice Hall, Upper Saddle River, 1996. |
[30] |
D.M. Barnett, J. Lothe, J. Phys. F Met. Phys. 4 (1974) 1618-1635.
DOI URL |
[31] |
J. Zhang, H. Zhang, H. Ye, Y. Zheng, Sci. Rep. 6 (2016) 22893.
DOI URL |
[1] | Z. Zhen, H. Wang, C.Y. Teng, C.G. Bai, D.S. Xu, R. Yang. Dislocation self-interaction in TiAl: Evolution of super-dislocation dipoles revealed by atomistic simulations [J]. J. Mater. Sci. Technol., 2021, 69(0): 138-147. |
[2] | Huhu Su, Xinzhe Zhou, Shijian Zheng, Hengqiang Ye, Zhiqing Yang. Atomic-resolution studies on reactions between basal dislocations and $\left\{ 10\bar{1}2 \right\}$ coherent twin boundaries in a Mg alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 28-35. |
[3] | Qiu-Jie Chen, Shang-Yi Ma, Shao-Qing Wang. The assisting and stabilizing role played by ω phase during the $~\left\{ 112 \right\}{{111}_{\beta }}$ twinning in Ti-Mo alloys: A first-principles insight [J]. J. Mater. Sci. Technol., 2021, 80(0): 163-170. |
[4] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
[5] | Ying-Jun Gao, Qian-Qian Deng, Zhe-yuan Liu, Zong-Ji Huang, Yi-Xuan Li, Zhi-Rong Luo. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling [J]. J. Mater. Sci. Technol., 2020, 49(0): 236-250. |
[6] | A.G. Wang, X.H. An, J. Gu, X.G. Wang, L.L. Li, W.L. Li, M. Song, Q.Q. Duan, Z.F. Zhang, X.Z. Liao. Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 1-6. |
[7] | Yucheng Ji, Chaofang Dong, Decheng Kong, Xiaogang Li. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 46(0): 145-155. |
[8] | Liu Linghong, Chen Jianghua, Fan Touwen, Shang Shunli, Shao Qinqin, Yuan Dingwang, Dai Yu. The stability of deformation twins in aluminum enhanced by alloying elements [J]. J. Mater. Sci. Technol., 2019, 35(11): 2625-2629. |
[9] | Zhang Zhefeng, Li Linlin, Zhang Zhenjun, Zhang Peng. Twin boundary: Controllable interface to fatigue cracking. [J]. J. Mater. Sci. Technol., 2017, 33(7): 603-606. |
[10] | Li L.L., Zhang Z.J., Zhang P., Tan J., Yang J.B., Zhang Z.F.. Deformation behaviors of Cu bicrystals with an inclined twin boundary at multiple scales [J]. J. Mater. Sci. Technol., 2017, 33(7): 698-702. |
[11] | Yanfen Luo,Yuchen Wang,Yanbo Wang,Yuanming Wang,Manling Sui. Intrinsic Strengthening of Coherent Twin Boundaries in Copper [J]. J Mater Sci Technol, 2009, 25(02): 211-214. |
[12] | Lei LU. Current Progress of Mechanical Properties of Metals with Nano-scale Twins [J]. J Mater Sci Technol, 2008, 24(04): 473-482. |
[13] | Dongliang LIN(T.L.Lin) Da CHEN Min LU Department of Materials Science,Shanghai Jiaotong University,Shanghai,200030,China. Atomistic Simulation of Interaction between Grain Boundary and Dislocations in Ni_3Al [J]. J Mater Sci Technol, 1993, 9(5): 327-337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||