J. Mater. Sci. Technol. ›› 2022, Vol. 117: 49-58.DOI: 10.1016/j.jmst.2021.11.044
• Research Article • Previous Articles Next Articles
Shuangqin Chena,c,*(), Mai Lia, Qingmin Jia, Tao Fenga, Si Lana,*(
), KeFu Yaob
Received:
2021-10-07
Revised:
2021-11-23
Accepted:
2021-11-25
Published:
2022-02-01
Online:
2022-08-01
Contact:
Shuangqin Chen,Si Lan
About author:
lansi@njust.edu.cn (S. Lan).Shuangqin Chen, Mai Li, Qingmin Ji, Tao Feng, Si Lan, KeFu Yao. Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment[J]. J. Mater. Sci. Technol., 2022, 117: 49-58.
Fig. 1. Monitoring the degradation of azo dye Orange II (OII) catalyzed by FeSiB MG ribbons at different concentrations of chloride ions and in the presence of (a) H2O2, (b) peroxydisulfate (PDS), and (c) peroxymonosulfate (PMS) acting as oxidants. (d) Observed reaction rate and removal efficiency of OII at the 60 min mark catalyzed by FeSiB MG ribbons. Unless specified otherwise, the experimental conditions were the following: C0, 100 mg/L; solution volume, 250 mL; ribbon dosage, 500 mg/L; temperature, 25 °C; pH 3.
Fig. 2. Scanning electron microscopy images of FeSiB MG ribbons after 60 min of azo dye Orange II solution degradation reaction in the (a, b) FeSiB/H2O2, (c, d) FeSiB/H2O2/Cl-, (e, f) FeSiB/PDS, (g, h) FeSiB/PDS/Cl-, (i, j) FeSiB/PMS, and (k-m) FeSiB/PMS/Cl- systems. PDS: peroxydisulfate; PMS: peroxymonosulfate.
Fig. 3. X-ray diffraction patterns of fresh FeSiB MG ribbons and the said ribbons after being utilized to catalyze the degradation of azo dye Orange II in FeSiB/H2O2, FeSiB/H2O2/Cl-, FeSiB/PDS-, FeSiB/PDS/Cl-, FeSiB/PMS, and FeSiB/PMS/Cl- systems. PDS: peroxydisulfate; PMS: peroxymonosulfate.
Fig. 4. Fina scan X-ray photoelectron spectra of (a) Fe 2p, (b) Si 2p, (c) B 1 s, and (d) O 1 s in binding energy regions for the FeSiB MG ribbons before and after the said ribbons were utilized to catalyze the degradation of azo dye Orange II solutions in the FeSiB/H2O2, FeSiB/H2O2/Cl-, FeSiB/PDS, FeSiB/PDS/Cl-, FeSiB/PMS, and FeSiB/PMS/Cl- systems. PDS: peroxydisulfate; PMS: peroxymonosulfate.
Fig. 5. Concentrations of absorbable organic halogen (AOX) species (a) and of Fe ions leached into the solution of azo dye Orange II (b) determined in FeSiB/H2O2, FeSiB/H2O2/Cl-, FeSiB/PDS, FeSiB/PDS/Cl-, FeSiB/PMS, and FeSiB/PMS/Cl- systems. PDS: peroxydisulfate; PMS: peroxymonosulfate.
Fig. 6. Durability of the FeSiB metallic glassy ribbon catalysts in FeSiB/PMS system with addition of 30 g/L Cl-, (a) normalized concentration of OII vs. degradation time, and (b) degradation rate and degradation efficiency vs. cycle times.
Fig. 7. Data reflecting the degradation of azo dye Orange II in the presence of different quenchers in the (a) FeSiB/H2O2, (b) FeSiB/H2O2/Cl-, (c) FeSiB/PDS, (d) FeSiB/PDS/Cl-, (e) FeSiB/PMS, and (f) FeSiB/PMS/Cl- systems. (g) DMPO and (h) TEMP spin-trapping electron paramagnetic resonance spectrometry experiments conducted in FeSiB/H2O2, FeSiB/H2O2/Cl-, FeSiB/PDS, FeSiB/PDS/Cl-, FeSiB/PMS, and FeSiB/PMS/Cl- systems. MeOH: methanol; FFA: furfuryl alcohol; TBA: tert-butanol; PDS: peroxydisulfate; PMS: peroxymonosulfate; DMPO: 5,5-dimethyle-1-pyrolene N-oxide; TEMP: 2,2,6,6-tetramethyl-4-piperidinol.
[1] |
L. Han, B. Li, H. Wen, Y. Guo, Z. Lin, J. Mater. Sci. Technol. 70 (2021) 176-184.
DOI URL |
[2] |
B. Zhao, H. Li, Z. Li, S. Ge, X. Qin, S. Zhang, A. Wang, H. Zhang, Z. Zhu, J. Mater. Sci. Technol. 95 (2021) 158-166.
DOI URL |
[3] |
Y. Xing, J. Cheng, J. Wu, M. Zhang, X.A. Li, W. Pan, J. Mater. Sci. Technol. 45 (2020) 84-91.
DOI |
[4] | K. Pa ´zdzior, L. Bili ´nska, S. Ledakowicz, Chem. Eng. J. 376 (2019) 120579. |
[5] |
M. Zu, X. Zhou, S. Zhang, S. Qian, D.S. Li, X. Liu, S. Zhang, J. Mater. Sci. Technol. 78 (2021) 202-222.
DOI URL |
[6] |
S. Korpe, P.V. Rao, J. Environ. Chem. Eng. 9 (2021) 105234.
DOI URL |
[7] |
C. Liu, B. Wu, X.E. Chen, Chem. Eng. J. 335 (2018) 865-875.
DOI URL |
[8] |
S. Nasseri, A.H. Mahvi, M. Seyedsalehi, K. Yaghmaeian, R. Nabizadeh, M. Alimo- hammadi, G.H. Safari, J. Mol. Liq. 241 (2017) 704-714.
DOI URL |
[9] |
S. Xiao, M. Cheng, H. Zhong, Z. Liu, Y. Liu, X. Yang, Q. Liang, Chem. Eng. J. 384 (2020) 123265.
DOI URL |
[10] |
F. Miao, Q. Wang, S. Di, L. Yun, J. Zhou, B. Shen, J. Mater. Sci. Technol. 53 (2020) 163-173.
DOI URL |
[11] |
Y. Tan, S. Zheng, Y. Di, C. Li, R. Bian, Z. Sun, J. Mater. Sci. Technol. 95 (2021) 57-69.
DOI |
[12] |
M. G ˛agol, A. Przyjazny, G. Boczkaj, Chem. Eng. J. 338 (2018) 599-627.
DOI URL |
[13] |
N. Zheng, X. He, R. Hu, W. Guo, Z. Hu, Appl. Catal. B 298 (2021) 120505.
DOI URL |
[14] |
L. Zhang, L. Qiu, Q. Zhu, X. Liang, J. Huang, M. Yang, Z. Zhang, J. Ma, J. Shen, Appl. Catal. B 294 (2021) 120258.
DOI URL |
[15] |
Z. Jia, W.C. Zhang, W.M. Wang, D. Habibi, L.C. Zhang, Appl. Catal. B 192 (2016) 46-56.
DOI URL |
[16] |
S.X. Liang, Z. Jia, W.C. Zhang, X.F. Li, W.M. Wang, H.C. Lin, L.C. Zhang, Appl. Catal. B 221 (2018) 108-118.
DOI URL |
[17] |
Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, Appl. Catal. B 204 (2017) 537-547.
DOI URL |
[18] |
Q.Q. Wang, M.X. Chen, P.H. Lin, Z.Q. Cui, C.L. Chu, B.L. Shen, J. Mater. Chem. A 6 (2018) 10686-10699.
DOI URL |
[19] |
W.M. Yang, Q.Q. Wang, W.Y. Li, L. Xue, H.S. Liu, J. Zhou, J.Y. Mo, B.L. Shen, Mater. Des. 161 (2019) 136-146.
DOI URL |
[20] |
Z. Jia, X.G. Duan, P. Qin, W.C. Zhang, W.M. Wang, C. Yang, H.Q. Sun, S.B. Wang, L.C. Zhang, Adv. Funct. Mater. 27 (2017) 1702258.
DOI URL |
[21] |
Z. Jia, Q. Wang, L. Sun, Q. Wang, L.C. Zhang, G. Wu, J.H. Luan, Z.B. Jiao, A. Wang, S.X. Liang, M. Gu, J. Lu, Adv. Funct. Mater. 29 (2019) 1807857.
DOI URL |
[22] |
S. Lan, L. Zhu, Z. Wu, L. Gu, Q. Zhang, H. Kong, J. Liu, R. Song, S. Liu, G. Sha, Y. Wang, Q. Liu, W. Liu, P. Wang, C.T. Liu, Y. Ren, X.L. Wang, Nat. Mater. 20 (2021) 1347-1352.
DOI PMID |
[23] |
C. Chang, B. Shen, A. Inoue, Appl. Phys. Lett. 89 (2006) 051912.
DOI URL |
[24] |
C. Zhao, A. Wang, A. He, C. Chang, C.T. Liu, Sci. China Mater. 64 (2021) 1813-1819.
DOI URL |
[25] |
W. Yang, Q. Wang, W. Li, L. Xue, H. Liu, J. Zhou, J. Mo, B. Shen, Mater. Des. 161 (2019) 136-146.
DOI URL |
[26] |
Y. Qi, J. Li, Y. Zhang, Q. Cao, Y. Si, Z. Wu, M. Akram, X. Xu, Appl. Catal. B 286 (2021) 119910.
DOI URL |
[27] |
C. Kim, T.T. Thao, J.H. Kim, I. Hwang, Chemosphere 250 (2020) 126266.
DOI URL |
[28] |
J. Hao, S. Zhao, R. Mao, X. Zhao, Sep. Purif. Technol. 271 (2021) 118858.
DOI URL |
[29] |
S.Q. Chen, M. Li, X.Y. Ma, M.J. Zhou, D. Wang, M.Y. Yan, Z. Li, K.F. Yao, Chemo- sphere 264 (2021) 128392.
DOI URL |
[30] |
J. Zhang, P. Chen, W. Gao, W. Wang, F. Tan, X. Wang, X. Qiao, P.K. Wong, Sep. Purif. Technol. 265 (2021) 118474.
DOI URL |
[31] |
Y. Huang, Z. Wang, Q. Liu, X. Wang, Z. Yuan, J. Liu, Chemosphere 187 (2017) 338-346.
DOI PMID |
[32] |
M. Ahmadi, F. Ghanbari, A. Alvarez, S. Silva Martinez, Korean J. Chem. Eng. 34 (2017) 2154-2161.
DOI URL |
[33] |
X.F. Li, S.X. Liang, X.W. Xi, Z. Jia, S.K. Xie, H.C. Lin, J.P. Hu, L.C. Zhang, Metals 7 (2017) 525-533.
DOI URL |
[34] |
L. Ji, J.W. Chen, Z.G. Zheng, Z.G. Qiu, S.Y. Peng, S.H. Zhou, D.C. Zeng, J. Phys. Chem. Solids 145 (2020) 109546.
DOI URL |
[35] |
X. Yang, J. Cai, X. Wang, Y. Li, Z. Wu, W.D. Wu, X.D. Chen, J. Sun, S.P. Sun, Z. Wang, Environ. Sci. Technol. 54 (2020) 3714-3724.
DOI URL |
[36] |
T. Yang, D. Yu, D. Wang, T. Yang, Z. Li, M. Wu, M. Petru, J. Crittenden, Appl. Catal. B 286 (2021) 119859.
DOI URL |
[37] |
L.C. Zhang, Z. Jia, F. Lyu, S.X. Liang, J. Lu, Prog. Mater. Sci. 105 (2019) 100576.
DOI URL |
[38] |
Y. Xie, R. Xu, R. Liu, H. Liu, J. Tian, L. Chen, Chem. Eng. J. 389 (2020) 124457.
DOI URL |
[39] |
R. Yuan, S.N. Ramjaun, Z. Wang, J. Liu, J. Hazard Mater. 196 (2011) 173-179.
DOI URL |
[40] |
C. Fang, X. Lou, Y. Huang, M. Feng, Z. Wang, J. Liu, Chem. Eng. J. 323 (2017) 124-133.
DOI URL |
[41] |
AD.D. George, P. Dionysiou, Environ. Sci. Technol. 37 (2003) 4790.
DOI URL |
[42] |
E. Appiani, R. Ossola, D.E. Latch, P.R. Erickson, K. McNeill, Environ. Sci. Process Impacts 19 (2017) 507-516.
DOI PMID |
[43] |
Y. Zhang, B. Wang, K. Fang, Y. Qin, H. Li, J. Du, Chem. Eng. J. 411 (2021) 128462.
DOI URL |
[44] |
S. Wang, W. Xu, J. Wu, Q. Gong, P. Xie, Sep. Purif. Technol. 235 (2020) 116170.
DOI URL |
[45] |
S. Mohammadi, G. Moussavi, S. Shekoohiyan, M.L. Marín, F. Boscá, S. Giannakis, Chem. Eng. J. 411 (2021) 127738.
DOI URL |
[46] |
L.X. Shi, K.Y. Yao, Mater. Des. 189 (2020) 108511.
DOI URL |
[1] | Zenan Ma, Jiawei Li, Jijun Zhang, Aina He, Yaqiang Dong, Guoguo Tan, Mingqiang Ning, Qikui Man, Xincai Liu. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding [J]. J. Mater. Sci. Technol., 2021, 81(0): 43-50. |
[2] | Miao Fang, Wang Qianqian, Zeng Qiaoshi, Hou Long, Liang Tao, Cui Zhiqiang, Shen Baolong. Excellent reusability of FeBC amorphous ribbons induced by progressive formation of through-pore structure during acid orange 7 degradation [J]. J. Mater. Sci. Technol., 2020, 38(0): 107-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||