J. Mater. Sci. Technol. ›› 2022, Vol. 109: 147-156.DOI: 10.1016/j.jmst.2021.08.076
• Research Article • Previous Articles Next Articles
Liliang Shaoa, Lin Xuec, Qiang Luoa, Kuibo Yinb, Zirui Yuana, Mingyun Zhub, Tao Lianga, Qiaoshi Zengd, Litao Sunb, Baolong Shena,*(
)
Received:2021-07-20
Revised:2021-08-19
Accepted:2021-08-20
Published:2022-05-20
Online:2021-11-02
Contact:
Baolong Shen
About author:* E-mail address: blshen@seu.edu.cn (B. Shen).Liliang Shao, Lin Xue, Qiang Luo, Kuibo Yin, Zirui Yuan, Mingyun Zhu, Tao Liang, Qiaoshi Zeng, Litao Sun, Baolong Shen. Heterogeneous GdTbDyCoAl high-entropy alloy with distinctive magnetocaloric effect induced by hydrogenation[J]. J. Mater. Sci. Technol., 2022, 109: 147-156.
Fig. 4. Field dependence of ΔSM at different temperatures for the (a) GdTbDyCoAl and (b) GdTbDyCoAlH powders. (c) Temperature dependence of n values obtained from (a) and (b).
Fig. 5. (a) Magnetic hysteresis loops from -5 to 5 T at the temperature of 5 K for the two samples. Isothermal magnetizing and demagnetizing M-H curves at several temperatures below TM for the (b) GdTbDyCoAl and (c) GdTbDyCoAlH samples. (d) Temperature dependence of hysteretic loss.
Fig. 6. Arrott plots calculated from M-H curves for the (a) GdTbDyCoAl and (b) GdTbDyCoAlH powders. (c) and (d) The universal curves of ΔSM for the samples.
Fig. 7. Temperature dependence of magnetization under the applied magnetic field of 0.01 T for the GdTbDyCoAl and GdTbDyCoAlH powders. The inset shows the determination of TM and Curie-Weiss fitting.
Fig. 8. The real part of susceptibility (χ′) at frequency ranging from 13 to 9673 Hz for the (a) GdTbDyCoAl and (b) GdTbDyCoAlH samples. (c) The maximum relaxation time (τmax) versus the peak temperature of susceptibility (Tf) for the samples.
Fig. 10. FFT patterns of the selected areas (C and D) in Fig. 9(a) and (g) for the (a) GdTbDyCoAl and (b) GdTbDyCoAlH samples. (c) and (d) showing the corresponding segmentation of the HRTEM image for auto-correlation analysis. The dimension of each cell is 1.98 × 1.98 nm2.
Fig. 11. Indentation load versus indentation depth of the 5 × 5 array for the (a) GdTbDyCoAl and (b) GdTbDyCoAlH powders, respectively. (c) and (d) Variations of the hardness (Hn) and reduced modulus (Er) obtained from the nanoindentation tests for the GdTbDyCoAl and GdTbDyCoAlH samples.
| [1] |
K.A. Gschneidner, V.K. Pecharsky, Annu. Rev. Mater. Sci. 30 (2000) 387-429.
DOI URL |
| [2] | V. Franco, J.S. Blazquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramirez, A. Conde, Prog. Mater. Sci. 93 (2018) 112-232. |
| [3] |
V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78 (1997) 4494-4497.
DOI URL |
| [4] |
F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang, Appl. Phys. Lett. 78 (2001) 3675-3677.
DOI URL |
| [5] |
Z.S. Xu, Y.T. Dai, Y. Fang, Z.P. Luo, K. Han, C.J. Song, Q.J. Zhai, H.X. Zheng, J. Mater. Sci. Technol. 34 (2018) 1337-1343.
DOI URL |
| [6] |
O. Tegus, E. Bruck, K.H.J. Buschow, F.R. de Boer, Nature 415 (2002) 150-152.
DOI URL |
| [7] |
L. Zhang, S.C. Ma, Q. Ge, K. Liu, Q.Z. Jiang, X.Q. Han, S. Yang, K. Yu, Z.C. Zhong, J. Mater. Sci. Technol. 33 (2017) 1362-1370.
DOI |
| [8] |
J. Bai, D. Liu, J.L. Gu, X. Jiang, X.J. Liang, Z.Q. Guan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 74 (2021) 46-51.
DOI URL |
| [9] |
P. Jia, L.P. Duan, K. Wang, E.G. Wang, J. Mater. Sci. Technol. 35 (2019) 2283-2287.
DOI URL |
| [10] |
Q. Luo, W.H. Wang, J. Alloy. Compd. 495 (2010) 209-216.
DOI URL |
| [11] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1-93.
DOI URL |
| [12] |
L.W. Li, C. Xu, Y. Yuan, S.Q. Zhou, Mater. Res. Lett. 6 (2018) 413-418.
DOI URL |
| [13] |
Y.H. Li, S.W. Wang, X.W. Wang, M.L. Yin, W. Zhang, J. Mater. Sci. Technol. 43 (2020) 32-39.
DOI URL |
| [14] |
L. Luo, H.X. Shen, Y. Bao, H. Yin, S.D. Jiang, Y.J. Huang, S. Guo, S.Y. Gao, D.W. Xing, Z. Li, J.F. Sun, J. Magn. Magn. Mater. 507 (2020) 166856.
DOI URL |
| [15] |
J.T. Kim, S.H. Hong, J.M. Park, J. Eckert, K.B. Kim, J. Mater. Sci. Technol. 43 (2020) 135-143.
DOI URL |
| [16] |
L.T. Zhang, Y.J. Duan, T. Wada, H. Kato, J.M. Pelletier, D. Crespo, E. Pineda, J.C. Qiao, J. Mater. Sci. Technol. 83 (2021) 248-255.
DOI |
| [17] |
J.T. Huo, L.S. Huo, H. Men, X.M. Wang, A. Inoue, J.Q. Wang, C.T. Chang, R.W. Li, Intermetallics 58 (2015) 31-35.
DOI URL |
| [18] |
J. Li, L. Xue, W.M. Yang, C.C. Yuan, J.T. Huo, B.L. Shen, Intermetallics 96 (2018) 90-93.
DOI URL |
| [19] | P. Vajda, K.A. Gschneidner, L. Eyring, in: Handbook on the Physics and Chemistry of Rare Earths, 20, North-Holland, Amsterdam, 1995, pp. 207-291. |
| [20] | X.F. Han, L.Y. Lin, T. Miyazaki, F.M. Yang, R.G. Xu, X.H. Wang, H.G. Pan, C.P. Chen, J. Mater. Sci. Technol. 15 (1999) 5-9. |
| [21] |
Y.F. Chen, F. Wang, B.G. Shen, F.X. Hu, J.R. Sun, G.J. Wang, Z.H. Cheng, J. Phys. 15 (2003) L161-L167.
DOI URL |
| [22] |
A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi, Phys. Rev. B 67 (2003) 104416.
DOI URL |
| [23] |
Y.Y. Shao, J. Liu, M.X. Zhang, A.R. Yan, K.P. Skokov, D.Y. Karpenkov, O. Gut-fleisch, Acta Mater. 125 (2017) 506-512.
DOI URL |
| [24] |
A. Fujita, Acta Mater. 169 (2019) 162-171.
DOI |
| [25] |
V.B. Chzhan, I.S. Tereshina, E.A. Tereshina-Chitrova, G.S. Burkhanov, G.A. Poli-tova, H. Drulis, J. Magn. Magn. Mater. 470 (2019) 41-45.
DOI |
| [26] |
H. Sepehri-Amin, I. Dirba, X. Tang, T. Ohkubo, T. Schrefl, O. Gutfleisch, K. Hono, Acta Mater. 175 (2019) 276-285.
DOI |
| [27] |
B.B. Wang, L.S. Luo, F.Y. Dong, L. Wang, H.Y. Wang, F.X. Wang, L. Luo, B.X. Su, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 45 (2020) 198-206.
DOI URL |
| [28] |
H. Fu, M. Zou, N.K. Singh, Appl. Phys. Lett. 97 (2010) 262509.
DOI URL |
| [29] |
Q. Zheng, H. Fu, M.X. Wang, Int. J. Mod. Phys. B 26 (2012) 1250041.
DOI URL |
| [30] |
Q. Luo, B. Schwarz, N. Mattern, J. Shen, J. Eckert, AIP Adv. 3 (2013) 032134.
DOI URL |
| [31] |
T. Hashimoto, T. Numasawa, M. Shino, T. Okada, Cryogenics 21 (1981) 647-653 (Guildf).
DOI URL |
| [32] |
L.W. Li, Z. Ding, D.X. Huo, Y.P. Guo, Y. Qi, R. Poettgen, J. Alloy. Compd. 680 (2016) 415-418.
DOI URL |
| [33] | Y.K. Zhang, D. Guo, Y. Yang, J. Wang, S.H. Geng, X. Li, Z.M. Ren, G. Wilde, Inter-metallics 88 (2017) 61-64. |
| [34] |
L.W. Li, P. Xu, S.K. Ye, Y. Li, G.D. Liu, D.X. Huo, M. Yan, Acta Mater. 194 (2020) 354-365.
DOI URL |
| [35] |
H. Oesterreicher, F.T. Parker, J. Appl. Phys. 55 (1984) 4334-4338.
DOI URL |
| [36] |
Q. Luo, D. Phuong Nguyen, X. Kou, J. Shen, J. Alloy. Compd. 725 (2017) 835-839.
DOI URL |
| [37] |
Q. Luo, B. Schwarz, N. Mattern, J. Eckert, Phys. Rev. B 82 (2010) 024204.
DOI URL |
| [38] | S.K. Banerjee, Phys. Lett. 12 (1964) 16-17. |
| [39] |
V. Franco, J.S. Blázquez, A. Conde, Appl. Phys. Lett. 89 (2006) 222512.
DOI URL |
| [40] |
V. Franco, A. Conde, Int. J. Refrig. 33 (2010) 465-473.
DOI URL |
| [41] | W.E. Wallace, G. Alefeld, J. Völkl, in: Hydrogen in Metals I, 28, Springer, 1978, pp. 169-195. |
| [42] |
C.A.M. Mulder, A.J. Vanduyneveldt, J.A. Mydosh, Phys. Rev. B 25 (1982) 515-518.
DOI URL |
| [43] |
A.T. Ogielski, Phys. Rev. B 32 (1985) 7384-7398.
DOI URL |
| [44] |
K. Binder, A.P. Young, Rev. Mod. Phys. 58 (1986) 801-976.
DOI URL |
| [45] |
L. Xue, L.L. Shao, Q. Luo, L.N. Hu, Y.B. Zhao, K.B. Yin, M.Y. Zhu, L.T. Sun, B.L. Shen, X.F. Bian, J. Mater. Sci. Technol. 77 (2021) 28-37.
DOI URL |
| [46] |
L.L. Shao, Q.Q. Wang, L. Xue, M.Y. Zhu, A.D. Wang, J.H. Luan, K.B. Yin, Q. Luo, Q.S. Zeng, L.T. Sun, B.L. Shen, J. Mater. Res. Technol. 11 (2021) 378-391.
DOI URL |
| [47] |
Q. Wang, C.T. Liu, Y. Yang, J.B. Liu, Y.D. Dong, J. Lu, Sci. Rep. 4 (2014) 4648.
DOI PMID |
| [48] |
D. Granata, E. Fischer, J.F. Loeffler, Scr. Mater. 103 (2015) 53-56.
DOI URL |
| [49] |
L. Xia, Q. Guan, D. Ding, M.B. Tang, Y.D. Dong, Appl. Phys. Lett. 105 (2014) 192402.
DOI URL |
| [1] | Qiang Luo, Donghui Li, Mingjuan Cai, Siyi Di, Zhengguo Zhang, Qiaoshi Zeng, Qianqian Wang, Baolong Shen. Excellent magnetic softness-magnetization synergy and suppressed defect activation in soft magnetic amorphous alloys by magnetic field annealing [J]. J. Mater. Sci. Technol., 2022, 116(0): 72-82. |
| [2] | Y.J. Duan, L.T. Zhang, T. Wada, H. Kato, E. Pined, D. Crespo, J.M. Pelletier, J.C. Qiao. Analysis of the anelastic deformation of high-entropy Pd20Pt20Cu20Ni20P20 metallic glass under stress relaxation and recovery [J]. J. Mater. Sci. Technol., 2022, 107(0): 82-91. |
| [3] | Xiubing Huang, Xiaoyu Li, Wei Xia, Bin Hu, Martin Muhler, Baoxiang Peng. Highly dispersed Pd clusters/nanoparticles encapsulated in MOFs via in situ auto-reduction method for aqueous phenol hydrogenation [J]. J. Mater. Sci. Technol., 2022, 109(0): 167-175. |
| [4] | Wenjie Lu, Kang Yan, Xian Luo, Yuetang Wang, Le Hou, Pengtao Li, Bin Huang, Yanqing Yang. Superb strength and ductility balance of a Co-free medium-entropy alloy with dual heterogeneous structures [J]. J. Mater. Sci. Technol., 2022, 98(0): 197-204. |
| [5] | He Zhou, Dekun Wang, Zhe Li, Junzhuang Cong, Ziyuan Yu, Shuo Zhao, Peng Jiang, Daoyong Cong, Xinqi Zheng, Kaiming Qiao, Hu Zhang. Large enhancement of magnetocaloric effect induced by dual regulation effects of hydrostatic pressure in Mn0.94Fe0.06NiGe compound [J]. J. Mater. Sci. Technol., 2022, 114(0): 73-80. |
| [6] | Langting Zhang, Yajuan Duan, Eloi Pineda, Hidemi Kato, Jean-Marc Pelletier, Jichao Qiao. Effect of physical aging and cyclic loading on power-law creep of high-entropy metallic glass [J]. J. Mater. Sci. Technol., 2022, 115(0): 1-9. |
| [7] | Xuefei Miao, Yong Gong, Fengqi Zhang, Yurong You, Luana Caron, Fengjiao Qian, Wenhui Guo, Yujing Zhang, Yuanyuan Gong, Feng Xu, Niels van Dijk, Ekkes Brück. Enhanced reversibility of the magnetoelastic transition in (Mn,Fe)2(P,Si) alloys via minimizing the transition-induced elastic strain energy [J]. J. Mater. Sci. Technol., 2022, 103(0): 165-176. |
| [8] | Jiashun Wang, Linlin Wang, Jiangyong Diao, Xi Xie, Guoming Lin, Qing Jia, Hongyang Liu, Guoxin Sui. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene [J]. J. Mater. Sci. Technol., 2022, 103(0): 209-214. |
| [9] | Zibao Jiao, Wenjun Huyan, Junru Yao, Zhengjun Yao, Jintang Zhou, Peijiang Liu. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling [J]. J. Mater. Sci. Technol., 2022, 113(0): 166-174. |
| [10] | Weibin Cui, Guiquan Yao, Shengyu Sun, Qiang Wang, Sen Yang. Unconventional metamagnetic phase transition in R2In (R=Nd, Pr) with lambda-like specific heat and nonhysteresis [J]. J. Mater. Sci. Technol., 2022, 101(0): 80-84. |
| [11] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
| [12] | Zhipan Ma, Xiaoshi Dong, Zhenqian Zhang, Lingwei Li. Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds [J]. J. Mater. Sci. Technol., 2021, 92(0): 138-142. |
| [13] | Jing Bai, Die Liu, Jianglong Gu, Xinjun Jiang, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy [J]. J. Mater. Sci. Technol., 2021, 74(0): 46-51. |
| [14] | Xuanwei Zhao, Xianming Zheng, Xiaohua Luo, Fei Gao, Hai Zeng, Guang Yu, Sajjad Ur Rehman, Changcai Chen, Shengcan Ma, Weijun Ren, Zhenchen Zhong. Large magnetocaloric effect and magnetoresistance in ErNi single crystal [J]. J. Mater. Sci. Technol., 2021, 86(0): 56-63. |
| [15] | Baoguo Yuan, Xing Liu, Jiangfei Du, Qiang Chen, Yuanyuan Wan, Yunliang Xiang, Yan Tang, Xiaoxue Zhang, Zhongyue Huang. Effects of hydrogenation temperature on room-temperature compressive properties of CMHT-treated Ti6Al4V alloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 132-143. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
