J. Mater. Sci. Technol. ›› 2022, Vol. 109: 157-166.DOI: 10.1016/j.jmst.2021.09.028
• Research Article • Previous Articles Next Articles
Bangyang Zhoua, Jian Heb,c,*(), Qijie Zhoua, Hongbo Guoa,b,c
Received:
2021-07-09
Revised:
2021-08-27
Accepted:
2021-09-06
Published:
2022-05-20
Online:
2021-11-01
Contact:
Jian He
About author:
* Research Institute for Frontier Science, Beihang Uni-versity (BUAA), Beijing 100191, China. E-mail address: hejian511690@buaa.edu.cn (J. He).Bangyang Zhou, Jian He, Qijie Zhou, Hongbo Guo. Effects of laser shock processing on θ-Al2O3 to α-Al2O3 transformation and oxide scale morphology evolution in (γ’+β) two-phase Ni-34Al-0.1Dy alloys[J]. J. Mater. Sci. Technol., 2022, 109: 157-166.
Parameters | Value | Unit |
---|---|---|
Wavelength | 1064 | nm |
Pulse duration | 20 | ns |
Spot diameter | 3 | mm |
Overlapping rate | 50 | % |
Pulse energy | 2-6 | J |
Table 1. Parameters of LSP.
Parameters | Value | Unit |
---|---|---|
Wavelength | 1064 | nm |
Pulse duration | 20 | ns |
Spot diameter | 3 | mm |
Overlapping rate | 50 | % |
Pulse energy | 2-6 | J |
Ni | Al | Dy | |
---|---|---|---|
β | 63.78 | 36.22 | - |
γ’ | 73.36 | 26.64 | - |
Dy-rich phase | 72.65 | 11.56 | 15.79 |
Table 2. Chemical compositions of the as-annealed alloys (at.%).
Ni | Al | Dy | |
---|---|---|---|
β | 63.78 | 36.22 | - |
γ’ | 73.36 | 26.64 | - |
Dy-rich phase | 72.65 | 11.56 | 15.79 |
Fig. 3. Surface morphologies of oxide scales after 100 h cyclic oxidation at 1150 °C: (a, d) untreated sample; (b, e) LSP-2 sample; (c, f) LSP-6 sample.
Al | Ni | O | |
---|---|---|---|
1 | 53.22 | 0.22 | 46.54 |
2 | 39.59 | 10.49 | 49.87 |
3 | 49.71 | 0.07 | 50.22 |
4 | 37.06 | 11.58 | 51.35 |
5 | 47.23 | 5.8 | 46.91 |
Table 3. Chemical compositions of the marked areas (at.%).
Al | Ni | O | |
---|---|---|---|
1 | 53.22 | 0.22 | 46.54 |
2 | 39.59 | 10.49 | 49.87 |
3 | 49.71 | 0.07 | 50.22 |
4 | 37.06 | 11.58 | 51.35 |
5 | 47.23 | 5.8 | 46.91 |
Fig. 4. Cross-sectional morphologies of oxide scales after 100 h cyclic oxidation at 1150 °C: (a, d) untreated sample; (b, e) LSP-2 sample; (c, f) LSP-6 sample.
Thickness of oxide scale | |
---|---|
Untreated sample | 5-5.6 |
LSP-2 | 3.4-4.5 |
LSP-6 | 3.5-4.8 |
Table 4. Thickness of oxide scale (μm).
Thickness of oxide scale | |
---|---|
Untreated sample | 5-5.6 |
LSP-2 | 3.4-4.5 |
LSP-6 | 3.5-4.8 |
Fig. 5. Surface morphologies of oxide scales after different isothermal oxidation time at 1150 °C: (a) untreated sample at 20 h oxidation; (b) LSP-2 sample at 20 h oxidation; (c) LSP-6 sample at 20 h oxidation; (d) untreated sample at 50 h oxidation; (e) LSP-2 sample at 50 h oxidation; (f) LSP-6 sample at 50 h oxidation.
Fig. 6. The photo-stimulated luminescence spectra of the oxide scale at 1150 °C: (a) 10 min; (b) 30 min; (c) 60 min; (d) curve of θ-Al2O3 content with the oxidation time; (e) residual stress of the oxide scale after 1 h oxidation.
Empty Cell | Al | Ni | O |
---|---|---|---|
1 (small size Al2O3 particles) | 38.18 | 4.69 | 57.01 |
2 (large size Al2O3 particles) | 43.89 | 0.71 | 55.40 |
Table 5. Chemical compositions of Al2O3 with different sizes (at.%).
Empty Cell | Al | Ni | O |
---|---|---|---|
1 (small size Al2O3 particles) | 38.18 | 4.69 | 57.01 |
2 (large size Al2O3 particles) | 43.89 | 0.71 | 55.40 |
Fig. 7. Mapping results of the oxide scale after 30 min oxidation at 1150 °C: (a) untreated samples; (b) LSP-2; (c) LSP-6 (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
Fig. 9. Surface morphologies of the oxide scale grown on original β phase after 5 h oxidation at 1150 °C: (a) untreated samples; (b) LSP-2; (c) LSP-6.
[1] |
B.A. Pint, M. Treska, L.W. Hobbs, Oxid. Met. 47 (1997) 1-20.
DOI URL |
[2] |
D.B. Miracle, Acta Metall. Mater. 41 (1993) 649-684.
DOI URL |
[3] |
I. Baker, Mater. Sci. Eng. A 192-193 (1995) 1-13.
DOI URL |
[4] |
D.Q. Li, H.B. Guo, H. Peng, S.K. Gong, H.B. Xu, Appl. Surf. Sci. 283 (2013) 513-520.
DOI URL |
[5] |
H.B. Guo, T. Zhang, S.X. Wang, S.K. Gong, Corros. Sci. 53 (2011) 2228-2232.
DOI URL |
[6] |
D.Q. Li, H.B. Guo, D. Wang, T. Zhang, S.K. Gong, H.B. Xu, Corros. Sci. 66 (2013) 125-135.
DOI URL |
[7] |
B.A. Pint, Oxid. Met. 45 (1996) 1-37.
DOI URL |
[8] |
H.B. Guo, D. Wang, H. Peng, S.K. Gong, H.B. Xu, Corros. Sci. 78 (2014) 369-377.
DOI URL |
[9] |
C.A. Barrett, Oxid. Met. 30 (1988) 361-390.
DOI URL |
[10] |
J.C. Li, L.L. Wei, He J, Chen H, H.B. Guo, J. Mater. Sci. Technol. 58 (2020) 63-72.
DOI URL |
[11] |
X.Y. Gong, H. Peng, Y. Ma, H.B. Guo, S.K. Gong, J. Alloy. Compd. 672 (2016) 36-44.
DOI URL |
[12] |
V.K. Tolpygo, D.R. Clarke, Acta Mater. 48 (2000) 3283-3293.
DOI URL |
[13] |
N.P. Padture, M. Gell, E.H. Jordan, Science 296 (2002) 280-284.
PMID |
[14] |
Z.H. Xu, R.D. Mu, L.M. He, X.Q. Cao, J. Alloy. Compd. 466 (2008) 471-478.
DOI URL |
[15] |
J. Muller, D. Neuschutz, Vacuum 71 (2003) 247-251.
DOI URL |
[16] | J.A. Haynes, Y. Zhang, K.M. Cooley, L. Walker, K.S. Reeves, B.A. Pint, Surf. Coat. Technol. 188 (2004) 153-157. |
[17] |
Y. Chen, X.F. Zhao, P. Xiao, Acta Mater. 159 (2018) 150-162.
DOI URL |
[18] |
L.R. Luo, H. Zhang, Y. Chen, C.S. Zhao, S. Alavi, F.W. Guo, X.F. Zhao, P. Xiao, Corros. Sci. 145 (2018) 262-270.
DOI URL |
[19] |
J. He, Z. Zhang, H. Peng, S.K. Gong, H.B. Guo, Corros. Sci. 98 (2015) 699-707.
DOI URL |
[20] |
J. He, H. Peng, S.K. Gong, H.B. Guo, Corros. Sci. 120 (2017) 130-138.
DOI URL |
[21] |
X.Z. Cao, J. He, H. Chen, B.Y. Zhou, L. Liu, H.B. Guo, Corros. Sci. 167 (2020) 108481.
DOI URL |
[22] |
M. Pavan, D. Furfari, B. Ahmad, M.A. Gharghouri, M.E. Fitzpatrick, Int. J. Fatigue. 123 (2019) 157-167.
DOI URL |
[23] |
X.D. Ren, B.Q. Chen, J.F. Jiao, Y. Yang, W.F. Zhou, Z.P. Tong, Opt. Laser Technol. 121 (2020) 105784.
DOI URL |
[24] | R.K. Nalla, L. Altenberger, U. Noster, G.Y. Liu, B. Scholtes, R.O. Ritchie, Mater. Sci. Eng. A 355 (2003) 200-216. |
[25] |
Y.Q. Hua, Z. Rong, Y.X. Ye, K.M. Chen, R.F. Chen, Q. Xue, H.X. Liu, Appl. Surf. Sci. 330 (2015) 439-444.
DOI URL |
[26] |
J.D. Cao, Appl. Surf. Sci. 493 (2019) 729-739.
DOI URL |
[27] | J.D. Cao, J.S. Zhang, Y.Q. Hua, R.F. Chen, Y.X. Ye, J. Mater. Process. Technol. 2433 (2017) 31-39. |
[28] |
L. Wang, D.Q. Li, J. Chang, H.B. Guo, S.K. Gong, H.B. Xu, J. Mater. Sci. Technol. 30 (2014) 229-233.
DOI |
[29] |
T. Zhang, H.B. Guo, S.K. Gong, H.B. Xu, Corros. Sci. 66 (2013) 59-66.
DOI URL |
[30] | D.F. Susan, Diffusion and High Temperature Oxidation of Nickel-Aluminium Based Composite Coatings, Lehigh University, Bethlehem, 1999. |
[31] |
C.S. Zhao, Y.H. Zhou, Z.H. Zou, L.R. Luo, X.F. Zhao, F.W. Guo, P. Xiao, Corros. Sci. 126 (2017) 334-343.
DOI URL |
[32] |
V.K. Tolpygo, D.R. Clarke, Mater. High Temp. 17 (2000) 59-70.
DOI URL |
[33] |
B.A. Pint, M. Treska, L.W. Hobbst, Oxid. Met. 47 (1997) 1-20.
DOI URL |
[34] |
P. Burtin, J.P. Brunelle, M. Pijolat, Appl. Catal. 34 (1987) 239-254.
DOI URL |
[35] |
C. Kaplin, M. Brochu, Surf. Coat. Technol. 205 (2011) 4221-4227.
DOI URL |
[36] |
G.C. Rybicki, J.L. Smialek, Oxid. Met. 31 (1989) 275-304.
DOI URL |
[37] |
C.G. Levi, E. Sommer, S.G. Terry, A. Catanoiu, M. Ruhle, J. Am. Ceram. Soc. 86 (2003) 676-685.
DOI URL |
[1] | C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩ [J]. J. Mater. Sci. Technol., 2022, 104(0): 224-235. |
[2] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
[3] | W. Wang X., W. Wang, W. Chen, M. Chen D.. Effect of Al addition and heat treatment on the microstructures and corrosion resistance of Mg-Cu alloys [J]. J. Mater. Sci. Technol., 2022, 98(0): 219-232. |
[4] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[5] | Jie Sun, Chuangwei Liu, Wenhan Kong, Jie Liu, Liangyu Ma, Song Li, Yuanhong Xu. Rational design of FeS2 microspheres as high-performance catalyst for electrooxidation of hydrazine [J]. J. Mater. Sci. Technol., 2022, 110(0): 161-166. |
[6] | Qiong Lu, Yaozha Lv, Chi Zhang, Hongbo Zhang, Wei Chen, Zhanyuan Xu, Peizhong Feng, Jinglian Fan. Highly oxidation-resistant Ti-Mo alloy with two-scale network Ti5Si3 reinforcement [J]. J. Mater. Sci. Technol., 2022, 110(0): 24-34. |
[7] | Xiangchen Kong, Zhenguo Li, Yuankai Shao, Xiaoning Ren, Kaixiang Li, Hanming Wu, Congjie Lv, Cheng Lv, Shengli Zhu. Modulate the superficial structure of La2Ce2O7 catalyst with anchoring CuOx species for the selective catalytic oxidation of NH3 [J]. J. Mater. Sci. Technol., 2022, 111(0): 1-8. |
[8] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[9] | Nikolaus Jäger, Michael Meindlhumer, Michal Zitek, Stefan Spor, Hynek Hruby, Farwah Nahif, Jaakko Julin, Martin Rosenthal, Jozef Keckes, Christian Mitterer, Rostislav Daniel. Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings [J]. J. Mater. Sci. Technol., 2022, 100(0): 91-100. |
[10] | Bowen Zhang, Chuantong Chen, Takuya Sekiguchi, Yang Liu, Caifu Li, Suganuma Katsuaki. Development of anti-oxidation Ag salt paste for large-area (35 × 35 mm2) Cu-Cu bonding with ultra-high bonding strength [J]. J. Mater. Sci. Technol., 2022, 113(0): 261-270. |
[11] | Wei Wei, Shujiang Geng, Fuhui Wang. Evaluation of Ni-Fe base alloys as inert anode for low-temperature aluminium electrolysis [J]. J. Mater. Sci. Technol., 2022, 107(0): 216-226. |
[12] | Dongdong Zhang, Jielong Zhou, Feng Peng, Ji Tan, Xianming Zhang, Shi Qian, Yuqin Qiao, Yu Zhang, Xuanyong Liu. Mg-Fe LDH sealed PEO coating on magnesium for biodegradation control, antibacteria and osteogenesis [J]. J. Mater. Sci. Technol., 2022, 105(0): 57-67. |
[13] | Shuangqin Chen, Mai Li, Qingmin Ji, Tao Feng, Si Lan, KeFu Yao. Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment [J]. J. Mater. Sci. Technol., 2022, 117(0): 49-58. |
[14] | Xinghong Zhang, Baihe Du, Ping Hu, Yuan Cheng, Jiecai Han. Thermal response, oxidation and ablation of ultra-high temperature ceramics, C/SiC, C/C, graphite and graphite-ceramics [J]. J. Mater. Sci. Technol., 2022, 102(0): 137-158. |
[15] | Qiyun Zhang, Renquan Wu, Yunhong Zhou, Qilang Lin, Changqing Fang. A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion [J]. J. Mater. Sci. Technol., 2022, 103(0): 15-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||