J. Mater. Sci. Technol. ›› 2022, Vol. 98: 219-232.DOI: 10.1016/j.jmst.2021.05.010
• Research Article • Previous Articles Next Articles
W. Wang X.a,b, W. Wanga,b,*(), W. Chena,b, M. Chen D.a,b,*(
)
Received:
2021-03-15
Revised:
2021-04-26
Accepted:
2021-05-20
Published:
2022-01-30
Online:
2022-01-25
Contact:
W. Wang,M. Chen D.
About author:
demin.chen.1@imr.ac.cn (D.M. Chen).W. Wang X., W. Wang, W. Chen, M. Chen D.. Effect of Al addition and heat treatment on the microstructures and corrosion resistance of Mg-Cu alloys[J]. J. Mater. Sci. Technol., 2022, 98: 219-232.
Alloy (wt.%) | Name | Solution treatment | Aging | |||
---|---|---|---|---|---|---|
Temperature (°C) | Time (h) | Temperature (°C) | Time (h) | |||
Mg-3Cu | CA0 | S1 | 450 | 20 | - | - |
A1 | 450 | 20 | 200 | 12 | ||
Mg-3Cu-4Al | CA4 | S2 | 400 | 20 | - | - |
A2 | 400 | 20 | 200 | 6 | ||
Mg-3Cu-8Al | CA8 | S3 | 400 | 20 | - | - |
A3 | 400 | 20 | 200 | 6 |
Table 1 Summary of nomenclature and heat treatment protocols of the investigated alloys.
Alloy (wt.%) | Name | Solution treatment | Aging | |||
---|---|---|---|---|---|---|
Temperature (°C) | Time (h) | Temperature (°C) | Time (h) | |||
Mg-3Cu | CA0 | S1 | 450 | 20 | - | - |
A1 | 450 | 20 | 200 | 12 | ||
Mg-3Cu-4Al | CA4 | S2 | 400 | 20 | - | - |
A2 | 400 | 20 | 200 | 6 | ||
Mg-3Cu-8Al | CA8 | S3 | 400 | 20 | - | - |
A3 | 400 | 20 | 200 | 6 |
Alloy | Cu | Al | Fe | Ni | Si | Mg |
---|---|---|---|---|---|---|
Mg-3Cu | 2.98 | - | 0.005 | 0.024 | 0.016 | Bal. |
Mg-3Cu-4Al | 2.99 | 3.91 | 0.006 | 0.001 | 0.015 | Bal. |
Mg-3Cu-8Al | 2.68 | 7.58 | 0.009 | 0.001 | 0.014 | Bal. |
Table 2 Actual chemical composition (wt.%) detected by ICP-AES of the investigated alloys.
Alloy | Cu | Al | Fe | Ni | Si | Mg |
---|---|---|---|---|---|---|
Mg-3Cu | 2.98 | - | 0.005 | 0.024 | 0.016 | Bal. |
Mg-3Cu-4Al | 2.99 | 3.91 | 0.006 | 0.001 | 0.015 | Bal. |
Mg-3Cu-8Al | 2.68 | 7.58 | 0.009 | 0.001 | 0.014 | Bal. |
Fig. 2. SEM images of the cast alloys: (a) CA0, (b) CA4, and (c) CA8; insets are their enlarged images; (d, e) SEM images and element distributions of CA4 and CA8 alloys, respectively.
Sample | Spectrum | Element (at.%) | ||
---|---|---|---|---|
Mg | Al | Cu | ||
CA0 | 1 | 83.6 | - | 16.4 |
CA4 | 2 | 73.25 | 12.39 | 14.36 |
3 | 78.4 | 20.73 | 0.87 | |
CA8 | 4 | 74.02 | 12.97 | 13.01 |
5 | 67.95 | 30.67 | 1.38 |
Table 3 Compositions of cast CA0, CA4 and CA8 alloys corresponding to Fig. 2 obtained by EDX.
Sample | Spectrum | Element (at.%) | ||
---|---|---|---|---|
Mg | Al | Cu | ||
CA0 | 1 | 83.6 | - | 16.4 |
CA4 | 2 | 73.25 | 12.39 | 14.36 |
3 | 78.4 | 20.73 | 0.87 | |
CA8 | 4 | 74.02 | 12.97 | 13.01 |
5 | 67.95 | 30.67 | 1.38 |
Fig. 5. Cu and Al contents in α-Mg of the cast and annealed alloys: 1, cast; 2, T4 (350 °C, 10 h); 3, T4 (350 °C, 20 h); 4, T4 (400 °C, 20 h); 5, T4 (450 °C, 20 h); 6, T6: CA0 (450 °C, 20 h/200 °C, 12 h); CA4 and CA8 (400 °C, 20 h/200 °C, 6 h).
Fig. 7. SEM surface images of the cast alloys after immersion in 3.5 wt.% NaCl solution for different time: (a, d) CA0, 1 min; (b, e) CA4,1 min; (c, f) CA8, 1 min; (g) CA0, 1 h; (h) CA4, 1 h; (i) CA8, 1 h. (j), (k), and (l) are cross-section images of (g), (h), and (i), respectively. (m) XRD patterns and (n, o) XPS spectra of Al 2p (n) and Cu 2p (o) of corrosion products of the cast CA0, CA4 and CA8 alloys.
Sample | Ecorr (VSCE) | -bc (mV/decade) | icorr (mA cm-2) |
---|---|---|---|
CA0 | -1.486±0.005 | 442.1 ± 18.4 | 2.69 ± 0.17 |
CA4 | -1.481±0.005 | 279.6 ± 18.1 | 0.97 ± 0.19 |
S2 | -1.424±0.004 | 232.2 ± 9.2 | 0.73 ± 0.02 |
A2 | -1.452±0.01 | 224.9 ± 2.5 | 0.87 ± 0.007 |
CA8 | -1.477±0.006 | 263.4 ± 9.1 | 0.64 ± 0.03 |
S3 | -1.478±0.010 | 257.1 ± 2.9 | 0.65 ± 0.17 |
A3 | -1.493±0.011 | 264.8 ± 13.3 | 0.83 ± 0.18 |
Table 4 Fitting results of polarization curves in 3.5 wt.% NaCl solution.
Sample | Ecorr (VSCE) | -bc (mV/decade) | icorr (mA cm-2) |
---|---|---|---|
CA0 | -1.486±0.005 | 442.1 ± 18.4 | 2.69 ± 0.17 |
CA4 | -1.481±0.005 | 279.6 ± 18.1 | 0.97 ± 0.19 |
S2 | -1.424±0.004 | 232.2 ± 9.2 | 0.73 ± 0.02 |
A2 | -1.452±0.01 | 224.9 ± 2.5 | 0.87 ± 0.007 |
CA8 | -1.477±0.006 | 263.4 ± 9.1 | 0.64 ± 0.03 |
S3 | -1.478±0.010 | 257.1 ± 2.9 | 0.65 ± 0.17 |
A3 | -1.493±0.011 | 264.8 ± 13.3 | 0.83 ± 0.18 |
Fig. 9. EIS of alloys after immersion in 3.5 wt.% NaCl solution for different time at room temperature: (a, d, g) Nyquist plots; (b, e, h) Bode impedance magnitude plots; (c, f, i) Bode phase angle plots; (j) and (k) are enlarged images of (d) and (g), respectively.
Fig. 10. Equivalent circuits of the cast alloys after immersion in 3.5 wt.% NaCl solution for different time. (a) CA0, 30 min; (b-d) CA4, from 5 min to 4 h; (c, d) CA8, from 5 min to 4 h..
Sample | Time | Rs (Ω cm2) | Rc (Ω cm2) | Qc (Ω-1 cm-2 s - n) | nc | Rf (Ω cm2) | Cf (F cm-2) | R1 (Ω cm2) | L1 (H cm2) | R2 (Ω cm2) | L2 (H cm2) | RL (Ω cm2) | CL (F cm-2) | nH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA0 | 30 min | 5.54 | 8.1 | 2.50 × 10-4 | 0.99 | 1.1 | 1.27 | - | - | - | - | a2.91 | a2.52 × 10-5 | 0.67 |
CA4 | 5 min | 4.15 | 66.8 | 9.04 × 10-6 | 0.96 | 9.0 | 3 × 10-3 | 42.8 | 26.66 | - | - | - | - | - |
10 min | 5.44 | 43.7 | 9.26 × 10-6 | 0.94 | 4.0 | 1 × 10-2 | 39.8 | 14.74 | 31.8 | 183.2 | - | - | - | |
1 h | 3.14 | 15.7 | 2.90 × 10-5 | 1.00 | 1.8 | 1.34 × 10-2 | 23.4 | 7.29 | 14.5 | 50.7 | - | - | - | |
2 h | 3.01 | 4.8 | 5.18 × 10-5 | 0.99 | 0.6 | 4.78 × 10-2 | 17.2 | 1.81 | 22.7 | 13.4 | - | - | - | |
3 h | 3.39 | 3.0 | 5.62 × 10-5 | 0.95 | 0.9 | 6 × 10-2 | 8.7 | 0.67 | - | - | 0.22 | 16.36 | - | |
4 h | 4.20 | 2.7 | 5.41 × 10-5 | 0.93 | 0.5 | 8.4 × 10-2 | 10.4 | 0.81 | - | - | 0.27 | 15.55 | - | |
CA8 | 5 min | 2.41 | 103.4 | 7.19 × 10-6 | 0.96 | 24.9 | 4.4 × 10-4 | 208.7 | 38.30 | 83.3 | 215.8 | - | - | - |
10 min | 4.04 | 108.3 | 4.55 × 10-6 | 0.94 | 31.4 | 3.6 × 10-4 | 323.7 | 53.49 | 210.1 | 359.7 | - | - | - | |
1 h | 4.05 | 43.3 | 5.43 × 10-6 | 0.93 | 7.8 | 1.6 × 10-3 | 126.6 | 17.90 | 92.1 | 174.1 | - | - | - | |
2 h | 4.25 | 16.3 | 7.64 × 10-6 | 0.87 | 2.5 | 7.2 × 10-3 | 45.6 | 6.42 | 38.5 | 64.9 | - | - | - | |
3 h | 4.30 | 8.1 | 1.37 × 10-5 | 0.84 | 1.4 | 1.6 × 10-2 | 24.4 | 2.99 | 37.0 | 33.9 | - | - | - | |
4 h | 4.53 | 5.8 | 2.72 × 10-5 | 0.86 | 0.6 | 2.8 × 10-2 | 18.8 | 3.48 | - | - | 0.59 | 24.74 | - | |
5 h | 4.63 | 5.7 | 3.06 × 10-5 | 0.85 | 0.6 | 3.9 × 10-2 | 24.7 | 3.99 | - | - | 0.69 | 17.86 | - |
Table 5 Fitting parameters of EIS obtained from equivalent circuits of the cast CA0, CA4 and CA8 alloys.
Sample | Time | Rs (Ω cm2) | Rc (Ω cm2) | Qc (Ω-1 cm-2 s - n) | nc | Rf (Ω cm2) | Cf (F cm-2) | R1 (Ω cm2) | L1 (H cm2) | R2 (Ω cm2) | L2 (H cm2) | RL (Ω cm2) | CL (F cm-2) | nH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA0 | 30 min | 5.54 | 8.1 | 2.50 × 10-4 | 0.99 | 1.1 | 1.27 | - | - | - | - | a2.91 | a2.52 × 10-5 | 0.67 |
CA4 | 5 min | 4.15 | 66.8 | 9.04 × 10-6 | 0.96 | 9.0 | 3 × 10-3 | 42.8 | 26.66 | - | - | - | - | - |
10 min | 5.44 | 43.7 | 9.26 × 10-6 | 0.94 | 4.0 | 1 × 10-2 | 39.8 | 14.74 | 31.8 | 183.2 | - | - | - | |
1 h | 3.14 | 15.7 | 2.90 × 10-5 | 1.00 | 1.8 | 1.34 × 10-2 | 23.4 | 7.29 | 14.5 | 50.7 | - | - | - | |
2 h | 3.01 | 4.8 | 5.18 × 10-5 | 0.99 | 0.6 | 4.78 × 10-2 | 17.2 | 1.81 | 22.7 | 13.4 | - | - | - | |
3 h | 3.39 | 3.0 | 5.62 × 10-5 | 0.95 | 0.9 | 6 × 10-2 | 8.7 | 0.67 | - | - | 0.22 | 16.36 | - | |
4 h | 4.20 | 2.7 | 5.41 × 10-5 | 0.93 | 0.5 | 8.4 × 10-2 | 10.4 | 0.81 | - | - | 0.27 | 15.55 | - | |
CA8 | 5 min | 2.41 | 103.4 | 7.19 × 10-6 | 0.96 | 24.9 | 4.4 × 10-4 | 208.7 | 38.30 | 83.3 | 215.8 | - | - | - |
10 min | 4.04 | 108.3 | 4.55 × 10-6 | 0.94 | 31.4 | 3.6 × 10-4 | 323.7 | 53.49 | 210.1 | 359.7 | - | - | - | |
1 h | 4.05 | 43.3 | 5.43 × 10-6 | 0.93 | 7.8 | 1.6 × 10-3 | 126.6 | 17.90 | 92.1 | 174.1 | - | - | - | |
2 h | 4.25 | 16.3 | 7.64 × 10-6 | 0.87 | 2.5 | 7.2 × 10-3 | 45.6 | 6.42 | 38.5 | 64.9 | - | - | - | |
3 h | 4.30 | 8.1 | 1.37 × 10-5 | 0.84 | 1.4 | 1.6 × 10-2 | 24.4 | 2.99 | 37.0 | 33.9 | - | - | - | |
4 h | 4.53 | 5.8 | 2.72 × 10-5 | 0.86 | 0.6 | 2.8 × 10-2 | 18.8 | 3.48 | - | - | 0.59 | 24.74 | - | |
5 h | 4.63 | 5.7 | 3.06 × 10-5 | 0.85 | 0.6 | 3.9 × 10-2 | 24.7 | 3.99 | - | - | 0.69 | 17.86 | - |
Sample | Mg2Cu | MgAlCu | Mg17Al12 |
---|---|---|---|
CA0 | +937 ± 44 | - | - |
CA4 | - | +1034 ± 51 | - |
CA8 | - | +877 ± 46 | +164 ± 46 |
Table 6 ΔVPD values (mV) of interfacial phases with respect to the Mg matrix of investigated alloys.
Sample | Mg2Cu | MgAlCu | Mg17Al12 |
---|---|---|---|
CA0 | +937 ± 44 | - | - |
CA4 | - | +1034 ± 51 | - |
CA8 | - | +877 ± 46 | +164 ± 46 |
[1] |
J. Ostojic, R. Rezaee, H. Bahrami. J. Petrol. Sci. Eng. 88-89 (2012) 75-81.
DOI URL |
[2] |
J. Rutqvist, A.P. Rinaldi, F. Cappa, G.J. Moridis. J. Petrol. Sci. Eng. 107 (2013) 31-44.
DOI URL |
[3] |
M.M. Hossain, M.K. Rahman. J. Petrol. Sci. Eng. 60 (2008) 86-104.
DOI URL |
[4] |
C. Zheng, Y. Liu, H. Wang, H. Zhu, R. Ji, Z. Liu, Y. Shen, Mater. Des. 70 (2015) 45-52.
DOI URL |
[5] |
X. Pei, S. Wei, B. Shi, Z. Shen, X. Wang, Z. Tong, T. Fu, Petrol. Explor. Dev. 41 (2014) 805-809.
DOI URL |
[6] | M. Zhou, C. Liu, S. Xu, Y. Gao, S. Jiang, Mater. Corros. 69 (2018) 760-769. |
[7] |
D.H. Xiao, Z.W. Geng, L. Chen, Z. Wu, H.Y. Diao, M. Song, P.F. Zhou, Metall. Mater. Trans. A 46 (2015) 4793-4803.
DOI URL |
[8] |
C. Zhang, L. Wu, G. Huang, L. Chen, D. Xia, B. Jiang, A. Atrens, F. Pan. J. Mater. Sci. Technol. 35 (2019) 2086-2098.
DOI |
[9] | M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Mater. Sci. 89 (2017) 92-193. |
[10] |
S. Mathieu, C. Rapin, J. Steinmetz, P. Steinmetz, Corros. Sci. 45 (2003) 2741-2755.
DOI URL |
[11] |
M. Anik, G. Celikten, Corros. Sci. 49 (2007) 1878-1894.
DOI URL |
[12] |
S. Oh, M. Kim, K. Eom, J. Kyung, D. Kim, E. Cho, H. Kwon, Int. J. Hydrog. Energy 41 (2016) 5296-5303.
DOI URL |
[13] |
S.B. Abhijeet, R. Balasubramaniam, M. Gupta, Corros. Sci. 50 (2008) 2423-2428.
DOI URL |
[14] |
X. Yan, P. Wan, L. Tan, M. Zhao, C. Shuai, K. Yang, Mater. Sci. Eng. B 229 (2018) 105-117.
DOI URL |
[15] |
S. Oh, H. Kim, M. Kim, K. Eom, J. Kyung, D. Kim, E. Cho, H. Kwon. J. Alloy. Compd. 741 (2018) 590-596.
DOI URL |
[16] |
C. Cai, R. Song, L. Wang, J. Li, Appl. Surf. Sci. 462 (2018) 243-254.
DOI URL |
[17] |
M. Esmaily, D.B. Blücher, J.E. Svensson, M. Halvarsson, L.G. Johansson, Scr. Mater. 115 (2016) 91-95.
DOI URL |
[18] |
H. Niu, K. Deng, K. Nie, F. Cao, X. Zhang, W. Li. J. Alloy. Compd. 787 (2019) 1290-1300.
DOI URL |
[19] | L. Chen, Z. Wu, D.H. Xiao, Z.W. Geng, P.F. Zhou, Mater. Corros. 66 (2015) 1159-1167. |
[20] |
Z.W. Geng, D.H. Xiao, L. Chen. J. Alloy. Compd. 686 (2016) 145-152.
DOI URL |
[21] |
Y.Z. Zhang, X.Y. Wang, Y.F. Kuang, B.S. Liu, K.W. Zhang, D.Q. Fang, Mater. Lett. 195 (2017) 194-197.
DOI URL |
[22] | E.H. Dix, G.F. Sager, B.P. Sager, Trans. Am. Inst. Min. Metall. Eng. 99 (1932) 119-131. |
[23] |
B. Mingo, R. Arrabal, M. Mohedano, C.L. Mendis, R. delOlmo, E. Matykina, N. Hort, M.C. Merino, A. Pardo, Mater. Des. 130 (2017) 48-58.
DOI URL |
[24] |
L. Wang, T. Shinohara, B.P. Zhang, Appl. Surf. Sci. 256 (2010) 5807-5812.
DOI URL |
[25] |
Q. Qu, J. Ma, L. Wang, L. Li, W. Bai, Z. Ding, Corros. Sci. 53 (2011) 1186-1193.
DOI URL |
[26] |
Z. Cui, F. Ge, Y. Lin, L. Wang, L. Lei, H. Tian, M. Yu, X. Wang, Electrochim. Acta 278 (2018) 421-437.
DOI URL |
[27] |
N. Wang, R. Wang, C. Peng, B. Peng, Y. Feng, C. Hu, Electrochim. Acta 149 (2014) 193-205.
DOI URL |
[28] |
S.D. Wang, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, E.H. Han, C. Dong, Corros. Sci. 142 (2018) 185-200.
DOI URL |
[29] |
F.Y. Cao, Z.M. Shi, J. Hofstetter, P.J. Uggowitzer, G.L. Song, M. Liu, A. Atrens, Corros. Sci. 75 (2013) 78-99.
DOI URL |
[30] |
M.I. Jamesh, G.S. Wu, Y. Zhao, D.R. Mckenzie, M. Bilek, P.K. Chu, Corros. Sci. 91 (2015) 160-184.
DOI URL |
[31] |
S.Z. Jin, S. Amira, E. Ghali, Adv. Eng. Mater. 9 (2007) 75-82.
DOI URL |
[32] |
J. Li, B. Zhang, Q. Wei, N. Wang, B. Hou, Electrochim. Acta 238 (2017) 156-167.
DOI URL |
[33] |
J. Chen, J. Wang, E. Han, J. Dong, W. Ke, Electrochim. Acta 52 (2007) 3299-3309.
DOI URL |
[34] |
G. Baril, N. Pebere, Corros. Sci. 43 (2001) 471-484.
DOI URL |
[35] |
Y.W. Song, D. Shan, R. Chen, E.H. Han, Corros. Sci. 51 (2009) 1087-1094.
DOI URL |
[36] |
P.L. Bonora, M. Andrei, A. Eliezer, E.M. Gutman, Corros. Sci. 44 (2002) 729-749.
DOI URL |
[37] |
G. Baril, C. Blanc, N. Pe $\acute{b}$e‘re. J. Electrochem. Soc. 148 (2001) B489-B496.
DOI URL |
[38] | M.F. Hurley, C.M. Efaw, P.H. Davis, J.R. Croteau, E. Graugnard, N. Birbilis, Corro-sion 71 (2015) 160-170. |
[39] | T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams, 2nd ed., ASM International, 1990. |
[40] | J.L. Haughton, R.J.M. Payne, J. Inst. Met. 57 (1935) 287-298. |
[41] | A. Portevin, P. Bastien, C.R. Hebd, Seances Acad. Sci. 195 (1932) 4 41-4 43. |
[42] |
G.L. Song, A. Atrens, Adv. Eng. Mater. 1 (1999) 11-33.
DOI URL |
[43] |
G.L. Song, A. Atrens, Adv. Eng. Mater. 5 (2003) 837-858.
DOI URL |
[44] |
G.M. Abady, N.H. Hilal, M. El-Rabiee, W.A. Badawy, Electrochim. Acta 55 (2010) 6651-6658.
DOI URL |
[45] |
J.H. Nordlien, K. Nisancioglu, S. Ono, N. Masuko, J. Electrochem. Soc. 143 (1996) 2564-2572.
DOI URL |
[46] |
L.P.H. Jeurgens, M.S. Vinodh, E.J. Mittemmeijer, Acta Mater. 56 (2008) 4621-4634.
DOI URL |
[47] |
S. Feliu, M.C. Merino, R. Arrabal, A.E. Coy, E. Matykina, Surf. Interface Anal. 41 (2009) 143-150.
DOI URL |
[48] |
S. Mathieu, C. Rapin, J. Steinmetz, P. Steinmetz, Corros. Sci. 45 (2003) 2741-2755.
DOI URL |
[49] |
M. Grimm, A. Lohmüller, R.F. Singer, S. Virtanen, Corros. Sci. 155 (2019) 195-208.
DOI URL |
[50] |
W. Zhou, T. Shen, N.N. Aung, Corros. Sci. 52 (2010) 1035-1041.
DOI URL |
[1] | Peng Wan, Weidan Wang, Lizhen Zheng, Ling Qin, Ke Yang. One-step electrodeposition synthesis of bisphosphonate loaded magnesium implant: A strategy to modulate drug release for osteoporotic fracture healing [J]. J. Mater. Sci. Technol., 2021, 78(0): 92-99. |
[2] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Interface strengthening in dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys by adjustable probes [J]. J. Mater. Sci. Technol., 2021, 85(0): 158-168. |
[3] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[4] | M. Gao, T.J. Chen, Z.X. Zhang. Formation of TiAlSi intermetallics during heating Ti-A356 Al mixed powder compact at semisolid temperature [J]. J. Mater. Sci. Technol., 2021, 94(0): 247-263. |
[5] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[6] | Liang Wu, Xingxing Ding, Zhicheng Zheng, Aitao Tang, Gen Zhang, Andrej Atrens, Fusheng Pan. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64(0): 66-72. |
[7] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[8] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[9] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[10] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[11] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[12] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[13] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[14] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[15] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||