J. Mater. Sci. Technol. ›› 2022, Vol. 107: 43-51.DOI: 10.1016/j.jmst.2021.07.039
• Research Article • Previous Articles Next Articles
Junlei Wanga,b, Hongfang Liub,*(), Magdy El-Said Mohamedc, Mazen A.Salehc, Tingyue Gua,*(
)
Received:
2021-05-17
Revised:
2021-05-17
Accepted:
2021-05-17
Published:
2022-04-30
Online:
2022-04-28
Contact:
Hongfang Liu,Tingyue Gu
About author:
gu@ohio.edu (T. Gu).Junlei Wang, Hongfang Liu, Magdy El-Said Mohamed, Mazen A.Saleh, Tingyue Gu. Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A[J]. J. Mater. Sci. Technol., 2022, 107: 43-51.
C | P | S | Si | Mn | Cr | Ni | Mo | N | Cu | Nb | Al | Ti | B | V |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.07 | 0.007 | 0.023 | 0.19 | 1.82 | 0.026 | 0.17 | 0.01 | 0.004 | 0.02 | 0.056 | 0.028 | 0.012 | 0.0001 | 0.002 |
Table 1 Elemental composition (wt%) of X80 carbon steel (Fe balance).
C | P | S | Si | Mn | Cr | Ni | Mo | N | Cu | Nb | Al | Ti | B | V |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.07 | 0.007 | 0.023 | 0.19 | 1.82 | 0.026 | 0.17 | 0.01 | 0.004 | 0.02 | 0.056 | 0.028 | 0.012 | 0.0001 | 0.002 |
THPS (ppm) | Planktonic (× 106 cells/mL) | Sessile (× 107 cells/cm2) |
---|---|---|
0 | 3.5 | 7.9 |
20 | 2.8 | 7.3 |
50 | Undetectable | Undetectable |
Table 2 D. ferrophilus planktonic cell count (hemocytometer) and sessile cell count (MPN) after 7-day incubation.
THPS (ppm) | Planktonic (× 106 cells/mL) | Sessile (× 107 cells/cm2) |
---|---|---|
0 | 3.5 | 7.9 |
20 | 2.8 | 7.3 |
50 | Undetectable | Undetectable |
THPS (ppm) | Weight loss (mg/cm2) | Corrosion rate (mm/a) | η (%) |
---|---|---|---|
0 | 19.7 | 1.31 | - |
20 | 17.8 | 1.18 | 10 |
50 | 1.65 | 0.11 | 92 |
Table 3 Weight loss after 7-day incubation and corrosion inhibition efficiency based on weight loss reduction.
THPS (ppm) | Weight loss (mg/cm2) | Corrosion rate (mm/a) | η (%) |
---|---|---|---|
0 | 19.7 | 1.31 | - |
20 | 17.8 | 1.18 | 10 |
50 | 1.65 | 0.11 | 92 |
Fig. 3. Nyquist and Bode plots of X80 with different concentrations of THPS in the EASW during 7-day incubation: (a, a1) 0 ppm THPS, (b, b1) 20 ppm THPS, (c, c1) 50 ppm THPS.
THPS(ppm) | Time (day) | Rs (Ω cm2) | Qf (Ω-1 sn1 cm-2) | n1 | Rf (Ω cm2) | Qdl (Ω-1 sn2 cm-2) | n2 | Rct (kΩ cm2) |
---|---|---|---|---|---|---|---|---|
0 | 1 | 8.46 | 5.43 × 10-2 | 0.91 | 164 | 5.95 × 10-1 | 0.91 | 0.13 |
3 | 8.43 | 6.13 × 10-2 | 0.89 | 1.36 | 1.58 × 10-1 | 0.88 | 0.20 | |
5 | 8.99 | 1.89 × 10-1 | 0.85 | 1.87 | 5.29 × 10-1 | 0.95 | 0.31 | |
7 | 8.60 | 2.29 × 10-1 | 0.86 | 2.51 | 5.12 × 10-1 | 0.96 | 0.29 | |
20 | 1 | 10.1 | 1.42 × 10-3 | 0.95 | 37.4 | 5.09 × 10-4 | 0.86 | 1.04 |
3 | 9.86 | 3.00 × 10-4 | 0.91 | 0.13 | 6.59 × 10-2 | 0.80 | 0.33 | |
5 | 9.61 | 2.64 × 10-2 | 0.89 | 0.68 | 1.07 × 10-1 | 0.80 | 0.30 | |
7 | 9.18 | 3.86 × 10-1 | 0.89 | 2.14 | 3.91 × 10-1 | 0.91 | 0.21 | |
50 | 1 | 10.9 | 2.70 × 10-4 | 0.90 | 237 | 5.51 × 10-3 | 0.51 | 1.64 |
3 | 11.0 | 5.00 × 10-4 | 0.91 | 251 | 6.71 × 10-3 | 0.61 | 1.60 | |
5 | 11.2 | 6.45 × 10-4 | 0.92 | 241 | 7.06 × 10-3 | 0.66 | 1.30 | |
7 | 12.3 | 8.16 × 10-4 | 0.92 | 246 | 7.18 × 10-3 | 0.68 | 1.37 |
Table 4 Fitted electrochemical parameters from EIS data in Fig. 3.
THPS(ppm) | Time (day) | Rs (Ω cm2) | Qf (Ω-1 sn1 cm-2) | n1 | Rf (Ω cm2) | Qdl (Ω-1 sn2 cm-2) | n2 | Rct (kΩ cm2) |
---|---|---|---|---|---|---|---|---|
0 | 1 | 8.46 | 5.43 × 10-2 | 0.91 | 164 | 5.95 × 10-1 | 0.91 | 0.13 |
3 | 8.43 | 6.13 × 10-2 | 0.89 | 1.36 | 1.58 × 10-1 | 0.88 | 0.20 | |
5 | 8.99 | 1.89 × 10-1 | 0.85 | 1.87 | 5.29 × 10-1 | 0.95 | 0.31 | |
7 | 8.60 | 2.29 × 10-1 | 0.86 | 2.51 | 5.12 × 10-1 | 0.96 | 0.29 | |
20 | 1 | 10.1 | 1.42 × 10-3 | 0.95 | 37.4 | 5.09 × 10-4 | 0.86 | 1.04 |
3 | 9.86 | 3.00 × 10-4 | 0.91 | 0.13 | 6.59 × 10-2 | 0.80 | 0.33 | |
5 | 9.61 | 2.64 × 10-2 | 0.89 | 0.68 | 1.07 × 10-1 | 0.80 | 0.30 | |
7 | 9.18 | 3.86 × 10-1 | 0.89 | 2.14 | 3.91 × 10-1 | 0.91 | 0.21 | |
50 | 1 | 10.9 | 2.70 × 10-4 | 0.90 | 237 | 5.51 × 10-3 | 0.51 | 1.64 |
3 | 11.0 | 5.00 × 10-4 | 0.91 | 251 | 6.71 × 10-3 | 0.61 | 1.60 | |
5 | 11.2 | 6.45 × 10-4 | 0.92 | 241 | 7.06 × 10-3 | 0.66 | 1.30 | |
7 | 12.3 | 8.16 × 10-4 | 0.92 | 246 | 7.18 × 10-3 | 0.68 | 1.37 |
THPS (ppm) | βa (V/dec) | βc (V/dec) | Ecorr (V) vs. SCE | icorr (A/cm2) | ηi (%) |
---|---|---|---|---|---|
0 | - | - 1.9 | - 0.78 | 5.0 × 10-4 | - |
20 | 0.98 | - | - 0.77 | 4.6 × 10-4 | 8 |
50 | 0.06 | - 0.53 | - 0.66 | 2.0 × 10-5 | 96 |
Table 5 Tafel parameters fitted from Fig. 5(b) PDP curves together with calculated corrosion inhibition efficiency based on icorr reduction.
THPS (ppm) | βa (V/dec) | βc (V/dec) | Ecorr (V) vs. SCE | icorr (A/cm2) | ηi (%) |
---|---|---|---|---|---|
0 | - | - 1.9 | - 0.78 | 5.0 × 10-4 | - |
20 | 0.98 | - | - 0.77 | 4.6 × 10-4 | 8 |
50 | 0.06 | - 0.53 | - 0.66 | 2.0 × 10-5 | 96 |
20 ppm THPS + Peptide A (ppb) | Planktonic (cells/mL) | Sessile (cells/cm2) |
---|---|---|
0 | 2.8 × 106 | 7.3 × 107 |
10 | 2.0 × 106 | 4.5 × 105 |
100 | 1.7 × 106 | 5.3 × 103 |
Table 6 Planktonic and sessile cell counts after 7-day incubation for different biocide treatments.
20 ppm THPS + Peptide A (ppb) | Planktonic (cells/mL) | Sessile (cells/cm2) |
---|---|---|
0 | 2.8 × 106 | 7.3 × 107 |
10 | 2.0 × 106 | 4.5 × 105 |
100 | 1.7 × 106 | 5.3 × 103 |
20 ppm THPS + Peptide A (ppb) | Weight loss (mg/cm2) | Corrosion rate (mm/a) | Enhancement (%) |
---|---|---|---|
0 | 17.8 | 1.18 | - |
10 | 5.4 | 0.36 | 69 |
100 | 3.0 | 0.20 | 83 |
Table 7 Weight losses after 7-day incubation for different biocide treatments and corrosion inhibition enhancements.
20 ppm THPS + Peptide A (ppb) | Weight loss (mg/cm2) | Corrosion rate (mm/a) | Enhancement (%) |
---|---|---|---|
0 | 17.8 | 1.18 | - |
10 | 5.4 | 0.36 | 69 |
100 | 3.0 | 0.20 | 83 |
Fig. 6. Surface profiles of X80 after 7-day incubation: (a) 20 ppm THPS (from Fig. 2(b)), (b) 20 ppm THPS + 10 ppb Peptide A, (c) 20 ppm THPS + 100 ppb Peptide A.
20 ppm THPS + Peptide A (ppb) | Time (day) | Rs (Ω cm2) | Qf(Ω-1 sn1 cm-2) | n1 | Rf (Ω cm2) | Qdl (Ω-1 sn2 cm-2) | n2 | Rct (kΩ cm2) |
---|---|---|---|---|---|---|---|---|
10 | 1 | 9.55 | 3.25 × 10-4 | 0.89 | 222 | 7.67 × 10-4 | 0.46 | 1.11 |
3 | 9.34 | 5.54 × 10-3 | 0.80 | 1.41 | 3.84 × 10-2 | 0.81 | 0.67 | |
5 | 4.89 | 1.93 × 10-1 | 0.92 | 2.05 | 1.63 × 10-1 | 0.86 | 0.47 | |
7 | 4.23 | 1.03 × 10-1 | 0.98 | 1.11 | 1.89 × 10-1 | 0.84 | 0.42 | |
100 | 1 | 7.07 | 6.93 × 10-4 | 0.81 | 288 | 5.95 × 10-4 | 0.80 | 1.80 |
3 | 10.4 | 2.08 × 10-3 | 0.95 | 185 | 6.87 × 10-4 | 0.81 | 0.80 | |
5 | 6.21 | 2.65 × 10-2 | 0.93 | 180 | 1.11 × 10-2 | 0.66 | 1.60 | |
7 | 5.53 | 2.66 × 10-2 | 0.92 | 179 | 1.40 × 10-2 | 0.84 | 1.28 |
Table 8 Fitted electrochemical parameters from the EIS data in Fig. 7.
20 ppm THPS + Peptide A (ppb) | Time (day) | Rs (Ω cm2) | Qf(Ω-1 sn1 cm-2) | n1 | Rf (Ω cm2) | Qdl (Ω-1 sn2 cm-2) | n2 | Rct (kΩ cm2) |
---|---|---|---|---|---|---|---|---|
10 | 1 | 9.55 | 3.25 × 10-4 | 0.89 | 222 | 7.67 × 10-4 | 0.46 | 1.11 |
3 | 9.34 | 5.54 × 10-3 | 0.80 | 1.41 | 3.84 × 10-2 | 0.81 | 0.67 | |
5 | 4.89 | 1.93 × 10-1 | 0.92 | 2.05 | 1.63 × 10-1 | 0.86 | 0.47 | |
7 | 4.23 | 1.03 × 10-1 | 0.98 | 1.11 | 1.89 × 10-1 | 0.84 | 0.42 | |
100 | 1 | 7.07 | 6.93 × 10-4 | 0.81 | 288 | 5.95 × 10-4 | 0.80 | 1.80 |
3 | 10.4 | 2.08 × 10-3 | 0.95 | 185 | 6.87 × 10-4 | 0.81 | 0.80 | |
5 | 6.21 | 2.65 × 10-2 | 0.93 | 180 | 1.11 × 10-2 | 0.66 | 1.60 | |
7 | 5.53 | 2.66 × 10-2 | 0.92 | 179 | 1.40 × 10-2 | 0.84 | 1.28 |
20 ppm THPS + Peptide A (ppb) | βa (V/dec) | βc (V/dec) | Ecorr (V) vs. SCE | icorr (A/cm2) | Enhancement (%) |
---|---|---|---|---|---|
0 | 0.98 | - | - 0.77 | 4.6 × 10-4 | - |
10 | 0.19 | - 0.36 | - 0.61 | 1.9 × 10-4 | 59 |
100 | 0.19 | - 0.20 | - 0.59 | 2.3 × 10-5 | 95 |
Table 9 Tafel parameters fitted from PDP curves in Fig. 9(b) and corrosion inhibition enhancements by Peptide A.
20 ppm THPS + Peptide A (ppb) | βa (V/dec) | βc (V/dec) | Ecorr (V) vs. SCE | icorr (A/cm2) | Enhancement (%) |
---|---|---|---|---|---|
0 | 0.98 | - | - 0.77 | 4.6 × 10-4 | - |
10 | 0.19 | - 0.36 | - 0.61 | 1.9 × 10-4 | 59 |
100 | 0.19 | - 0.20 | - 0.59 | 2.3 × 10-5 | 95 |
[1] |
B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, F. Ma, NPJ Mater. Degrad., 1 (2017), p. 4.
DOI URL |
[2] |
T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater. Sci. Technol., 35 (2019), pp. 631-636.
DOI URL |
[3] |
J. Wang, T. Zhang, X. Zhang, M. Asif, L. Jiang, S. Dong, T. Gu, H. Liu, J. Mater. Sci. Technol., 43 (2020), pp. 14-20.
DOI URL |
[4] |
J. Wang, F. Xiong, H. Liu, T. Zhang, Y. Li, C. Li, W. Xia, H. Wang, H. Liu, Bioelectrochemistry, 129 (2019), pp. 10-17.
DOI URL |
[5] |
J. Wang, B. Hou, J. Xiang, X. Chen, T. Gu, H. Liu, Corros. Sci., 150 (2019), pp. 296-308.
DOI URL |
[6] |
T. Wu, M. Yan, D. Zeng, J. Xu, C. Sun, C. Yu, W. Ke, J. Mater. Sci. Technol., 31 (2015), pp. 413-422.
DOI URL |
[7] |
D. Wang, J. Liu, R. Jia, W. Dou, S. Kumseranee, S. Punpruk, X. Li, T. Gu, Corros. Sci., 177 (2020), Article 108993.
DOI URL |
[8] | E. Heitz, W. Sand, H. Flemming, Microbial deterioration of materials, Springer (1996), pp. 5-14. |
[9] |
Q. Bao, D. Zhang, D. Lv, P. Wang, Corros. Sci., 65 (2012), pp. 405-413.
DOI URL |
[10] |
C.K. Gomez-Smith, T.M. LaPara, R.M. Hozalski, Environ. Sci. Technol., 49 (2015), pp. 8432-8440.
DOI PMID |
[11] |
R. Jia, J.L. Tan, P. Jin, D.J. Blackwood, D. Xu, T. Gu, Corros. Sci., 130 (2018), pp. 1-11.
DOI URL |
[12] |
H.T. Dinh, J. Kuever, M. Mußmann, A.W. Hassel, M. Stratmann, F. Widdel, Nature, 427 (2004), pp. 829-832.
DOI URL |
[13] |
D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann, F. Widdel, Environ. Microbiol., 14 (2012), pp. 1772-1787.
DOI URL |
[14] |
M. Sharma, H. Liu, S. Chen, F. Cheng, G. Voordouw, L. Gieg, Sci. Rep., 8 (2018), p. 16620.
DOI URL |
[15] |
J. Wang, C. Li, X. Zhang, M. Asif, T. Zhang, B. Hou, Y. Li, W. Xia, H. Wang, H. Liu, J. Electrochem. Soc., 166 (2019), pp. G39-G46.
DOI URL |
[16] |
R. Jia, D. Yang, H.B. Abd Rahman, T. Gu, Int. Biodeterior. Biodegrad., 125 (2017), pp. 116-124.
DOI URL |
[17] |
R. Jia, D. Yang, H.H. Al-Mahamedh, T. Gu, Ind. Eng. Chem. Res., 56 (2017), pp. 7640-7649.
DOI URL |
[18] |
G.A. Kahrilas, J. Blotevogel, P.S. Stewart, T. Borch, Environ. Sci. Technol., 49 (2015), pp. 16-32.
DOI URL |
[19] | M. Kim, J.K. Hatt, M.R. Weigand, R. Krishnan, S.G. Pavlostathis, K.T. Konstantinidis, Appl. Environ. Microbiol., 84 (2018), pp. e01201-e01218. |
[20] |
R. Jia, D. Yang, W. Dou, J. Liu, A. Zlotkin, S. Kumseranee, S. Punpruk, X. Li, T. Gu, Int. Biodeterior. Biodegrad., 139 (2019), pp. 78-85.
DOI URL |
[21] |
R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegrad., 137 (2019), pp. 42-58.
DOI URL |
[22] |
R. Jia, D. Yang, D. Xu, T. Gu, Bioelectrochemistry, 118 (2017), pp. 38-46.
DOI PMID |
[23] |
H. Liu, T. Gu, Y. Lv, M. Asif, F. Xiong, G. Zhang, H. Liu, Corros. Sci., 117 (2017), pp. 24-34.
DOI URL |
[24] |
G.A. Kahrilas, J. Blotevogel, E.R. Corrin, T. Borch, Environ. Sci. Technol., 50 (2016), pp. 11414-11423.
DOI URL |
[25] |
D. Wang, M. Ramadan, S. Kumseranee, S. Punpruk, T. Gu, J. Mater. Sci. Technol., 57 (2020), pp. 146-152.
DOI |
[26] |
D. Xu, Y. Li, T. Gu, World J. Microbiol. Biotechnol., 28 (2012), pp. 3067-3074.
DOI URL |
[27] |
R. Jia, D. Yang, Y. Li, D. Xu, T. Gu, Int. Biodeterior. Biodegrad., 117 (2017), pp. 97-104.
DOI URL |
[28] |
C. Liao, U. Kim, K. Kannan, Environ. Sci. Technol., 52 (2018), pp. 5007-5026.
DOI URL |
[29] |
J. Wen, K. Zhao, T. Gu, I.I. Raad, Int. Biodeterior. Biodegrad., 63 (2009), pp. 1102-1106.
DOI URL |
[30] |
A. Athanasiadis, G. Anderluh, P. Maček, D. Turk, Structure, 9 (2001), pp. 341-346.
PMID |
[31] |
U. Eduok, E. Ohaeri, J. Szpunar, Mater. Sci. Eng. C, 105 (2019), Article 110095.
DOI URL |
[32] |
L.Y. Cui, Z.Y. Liu, D.K. Xu, P. Hu, J.M. Shao, C.W. Du, X.G. Li, Corros. Sci., 174 (2020), Article 108842.
DOI URL |
[33] | G. ASTM, Standard practice for preparing, cleaning, evaluating corrosion test specimens, American Society for Testing and Materials, Philadelphia, Pennsylvania (2003). |
[34] |
R. Jia, D. Wang, P. Jin, T. Unsal, D. Yang, J. Yang, D. Xu, T. Gu, Corros. Sci., 153 (2019), pp. 127-137.
DOI |
[35] |
T. Zhang, J. Wang, G. Zhang, H. Liu, Corros. Sci., 176 (2020), Article 108930.
DOI URL |
[36] |
Y. Pu, W. Dou, T. Gu, S. Tang, X. Han, S. Chen, J. Mater. Sci. Technol., 47 (2020), pp. 10-19.
DOI URL |
[37] |
M. Lv, M. Du, X. Li, Y. Yue, X. Chen, J. Mater. Res. Technol., 8 (2019), pp. 4066-4078.
DOI URL |
[38] |
W. Dou, Y. Pu, X. Han, Y. Song, S. Chen, T. Gu, Bioelectrochemistry, 133 (2020), Article 107478.
DOI URL |
[1] | Boxin Wei, Jin Xu, Liqun Gao, Hui Feng, Jiajun Wu, Cheng Sun, Zhenyao Wang, Wei Ke. Nanosecond pulsed laser-assisted modified copper surface structure: Enhanced surface microhardness and microbial corrosion resistance [J]. J. Mater. Sci. Technol., 2022, 107(0): 111-123. |
[2] | Lin Lu, Qianqian Liu. Synergetic effects of photo-oxidation and biodegradation on failure behavior of polyester coating in tropical rain forest atmosphere [J]. J. Mater. Sci. Technol., 2021, 64(0): 195-202. |
[3] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[4] | Ini-Ibehe Nabuk Etim, Junhua Dong, Jie Wei, Chen Nan, Durga Bhakta Pokharel, Aniefiok Joseph Umoh, Dake Xu, Mingzhong Su, Wei Ke. Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution [J]. J. Mater. Sci. Technol., 2021, 64(0): 126-140. |
[5] | Dan Liu, Hongying Yang, Jianhui Li, Jiaqi Li, Yizhe Dong, Chuntian Yang, Yuting Jin, Lekbach Yassir, Zhong Li, David Hernandez, Dake Xu, Fuhui Wang, Jessica A. Smith. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2021, 79(0): 101-108. |
[6] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[7] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[8] | Mengjing Fu, Yijing Liang, Xue Lv, Chengnan Li, Yi Yan Yang, Peiyan Yuan, Xin Ding. Recent advances in hydrogel-based anti-infective coatings [J]. J. Mater. Sci. Technol., 2021, 85(0): 169-183. |
[9] | Boxin Wei, Jin Xu, Qi Fu, Qingyu Qin, Yunlong Bai, Cheng Sun, Chuan Wang, Zhenyao Wang, Wei Ke. Effect of sulfate-reducing bacteria on corrosion of X80 pipeline steel under disbonded coating in a red soil solution [J]. J. Mater. Sci. Technol., 2021, 87(0): 1-17. |
[10] | Xin Wei, Junhua Dong, Nan Chen, Amar Prasad Yadav, Qiying Ren, Jie Wei, Changgang Wang, Rongyao Ma, Wei Ke. Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment [J]. J. Mater. Sci. Technol., 2021, 66(0): 46-56. |
[11] | Kecheng Quan, Zexin Zhang, Yijin Ren, Henk J. Busscher, Henny C. van der Mei, Brandon W. Peterson. Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms [J]. J. Mater. Sci. Technol., 2021, 69(0): 69-78. |
[12] | Zhang Yuan, Ye He, Chuanchuan Lin, Peng Liu, Kaiyong Cai. Antibacterial surface design of biomedical titanium materials for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 78(0): 51-67. |
[13] | Xiaopei Wang, Yoshiaki Morisada, Hidetoshi Fujii. Flat friction stir spot welding of low carbon steel by double side adjustable tools [J]. J. Mater. Sci. Technol., 2021, 66(0): 1-9. |
[14] | Hanyu Zhao, Yupeng Sun, Lu Yin, Zhao Yuan, Yiliang Lan, Dake Xu, Chunguang Yang, Ke Yang. Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans [J]. J. Mater. Sci. Technol., 2021, 66(0): 112-120. |
[15] | Zhong Li, Jie Wang, Yizhe Dong, Dake Xu, Xianhui Zhang, Jianhua Wu, Tingyue Gu, Fuhui Wang. Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2021, 71(0): 177-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||