J. Mater. Sci. Technol. ›› 2022, Vol. 104: 224-235.DOI: 10.1016/j.jmst.2021.06.045
• Research Article • Previous Articles Next Articles
C.Z. Fanga,*(), H.C. Basoaltoa,*(
), M.J. Andersona, H.Y. Lib, S.J. Williamsc, P. Bowenb
Received:
2021-03-02
Revised:
2021-06-02
Accepted:
2021-06-09
Published:
2022-03-30
Online:
2022-03-30
Contact:
C.Z. Fang,H.C. Basoalto
About author:
h.basoalto@sheffield.ac.uk (H.C. Basoalto).✩ This paper is dedicated to the memory of Professor H.E. Evans.
C.Z. Fang, H.C. Basoalto, M.J. Anderson, H.Y. Li, S.J. Williams, P. Bowen. A numerical study on the influence of grain boundary oxides on dwell fatigue crack growth of a nickel-based superalloy✩[J]. J. Mater. Sci. Technol., 2022, 104: 224-235.
Burgers vector, b (m) | 2.54 × 10-10 |
---|---|
Taylor factor, M | 3.1 |
Dislocation multiplication parameter, C | 100 |
Activation energy, Q (kJ mol-1) | 305 |
Pre-exponential diffusivity, D0 (m2 s-1) | 1 × 10-5 |
Jog density, cj | 1 |
Mobile dislocation density, ρm (m-2) | 1010 |
Misfit stress (MPa) | -120 |
Young's modulus (GPa) | 188 |
Poisson's radio | 0.33 |
Table 1 Microstructrue parameters used in the constitutive model for RR1000.
Burgers vector, b (m) | 2.54 × 10-10 |
---|---|
Taylor factor, M | 3.1 |
Dislocation multiplication parameter, C | 100 |
Activation energy, Q (kJ mol-1) | 305 |
Pre-exponential diffusivity, D0 (m2 s-1) | 1 × 10-5 |
Jog density, cj | 1 |
Mobile dislocation density, ρm (m-2) | 1010 |
Misfit stress (MPa) | -120 |
Young's modulus (GPa) | 188 |
Poisson's radio | 0.33 |
Parameters of the as-received microstructure | ||
---|---|---|
Primary γ’ | Volume fraction, ϕ1 | 7.5% |
Average size, r1 | 916.0 nm | |
Secondary γ’ | Volume fraction, ϕ2 | 29.8% |
Average size, r2 | 92.5 nm | |
Tertiary γ’ | Volume fraction, ϕ3 | 5.4% |
Average size, r3 | 6.4 nm | |
Total volume fraction of γ’ | 42.7 % |
Table 2 Volume fraction and (initial) average size of primary, secondary and tertiary γ, of the as-received microstructure used in simulations.
Parameters of the as-received microstructure | ||
---|---|---|
Primary γ’ | Volume fraction, ϕ1 | 7.5% |
Average size, r1 | 916.0 nm | |
Secondary γ’ | Volume fraction, ϕ2 | 29.8% |
Average size, r2 | 92.5 nm | |
Tertiary γ’ | Volume fraction, ϕ3 | 5.4% |
Average size, r3 | 6.4 nm | |
Total volume fraction of γ’ | 42.7 % |
Fig. 6. Simulated oxide length ahead of the crack tip against the stress factor at a time of 5 h. Calibrated stress factor was chosen based on the experimental measurement in Ref. [12] which is 9.7 µm.
Oxide | RPB | $e_{\text{v}}^{\text{T}}$ | E (GPa) |
---|---|---|---|
NiO | 1.75 | 0.19 | 260 |
Cr2O3 | 6.65 | 0.63 | 143.6 |
Al2O3 | 5.91 | 0.59 | 362 |
Table 3 The Pilling-Bedworth ratio (RPB), transformation strain ($e_{\text{v}}^{\text{T}}$) and Young's modulus (E) of NiO, Cr2O3 and Al2O3 [49].
Oxide | RPB | $e_{\text{v}}^{\text{T}}$ | E (GPa) |
---|---|---|---|
NiO | 1.75 | 0.19 | 260 |
Cr2O3 | 6.65 | 0.63 | 143.6 |
Al2O3 | 5.91 | 0.59 | 362 |
Fig. 7. (a) The EDX mapping obtained by Kitaguchi et al. [12] from a region near the oxide tip is provided for comparison. (b) Contour of the simulated oxide intrusion around the oxide tip (Crack tip is on the left and not included in both images).
Fig. 8. Comparison between the predicted concentration profiles of Ni, Al, Cr and O across the oxide thickness (the right half) and the corresponding experimental measurement (data shown on the left half of the figure is extracted from Ref. [12]).
Fig. 11. Evolution of crack opening stress near the crack tip during oxide formation under applied stress of (a) 100 MPa, (b) 200 MPa, (c) 300 MPa. t = 0 s represents the time when uploading is just finished and no oxide exists.
Fig. 12. Evolution of crack opening stress near the crack tip during oxide formation when ${{K}_{\text{max}}}=22.0\;\text{MPa}\sqrt{m}$ and crack length a = 2 mm and the local fracture stress curve of the oxide ahead of the crack tip (dashed line). The red line indicates the extent of oxide growth at a given time. As shown, fracture is predicted at a time of approximately 100 s (the text states the precise value as 126 s).
Crack length (mm) | Kmax (MPa$\sqrt{m}$) |
---|---|
2 | 22.0 |
2.5 | 25.14 |
3.5 | 32.65 |
Table 4 Crack length and the corresponding stress intensity factors during holding time at the maximum load, Kmax used in simulations for prediction of crack growth rate.
Crack length (mm) | Kmax (MPa$\sqrt{m}$) |
---|---|
2 | 22.0 |
2.5 | 25.14 |
3.5 | 32.65 |
Fig. 13. Calculation of the time when crack growth is activated, i.e., when the normal stress at the oxide tip reaches the fracture stress curve, for different Kmax.
Kmax (MPa$\sqrt{m}$) | Time (s) | Oxide length (µm) | da/dt (mm/s) | da/dN (mm/cycle) |
---|---|---|---|---|
22.0 | 119 | 0.45 | 3.8 × 10-6 | 0.014 |
25.1 | 109 | 0.44 | 4.0 × 10-6 | 0.015 |
32.7 | 90 | 0.42 | 4.7 × 10-6 | 0.017 |
Table 5 The time obtained when the normal stress at the crack tip reaches the fracture stress curve and the corresponding oxide length at different Kmax for the as-received microstructure.
Kmax (MPa$\sqrt{m}$) | Time (s) | Oxide length (µm) | da/dt (mm/s) | da/dN (mm/cycle) |
---|---|---|---|---|
22.0 | 119 | 0.45 | 3.8 × 10-6 | 0.014 |
25.1 | 109 | 0.44 | 4.0 × 10-6 | 0.015 |
32.7 | 90 | 0.42 | 4.7 × 10-6 | 0.017 |
Fig. 14. Comparison between predicted crack growth rates under different Kmax for the as-received and aged microstructures and experimental data of dwell fatigue test with (1-3600-1-1) and without (1-1-1-1) 1 h dwell period at the maximum load. Results are normalised based on the predicted values of the as-received microstructure under Kmax = 32.65. (a) da/dt (mm/s). (b) da/dN (mm/cycle).
[1] |
M. Wang, J. Du, Q. Deng, Mater. Sci. Eng. A 812 (2021) 140903.
DOI URL |
[2] |
J. Telesman, T. Gabb, L. Ghosn, Int. J. Fatigue 133 (2020) 105431.
DOI URL |
[3] |
J. Pedron, A. Pineau, Mater. Sci. Eng. 56 (1982) 143-156.
DOI URL |
[4] |
D. Knowles, D. Hunt, Metall. Mater. Trans. A 33 (2002) 3165-3172.
DOI URL |
[5] |
X. Hu, Q. Zhang, Y. Jiang, G. Rao, G. Miao, W. He, X. Nie, Int. J. Fatigue 134 (2020) 105452.
DOI URL |
[6] |
K.A. Christofidou, M.C. Hardy, H.Y. Li, C. Argyrakis, H. Kitaguchi, N.G. Jones, P.M. Mignanelli, A.S. Wilson, O.M.D.M. Messé, E. Pickering, R.J. Gilbert, C.M.F. Rae, S. Yu, A. Evans, D. Child, P. Bowen, H.J. Stone, Metall. Mater. Trans. A 49 (2018) 3896-3907.
DOI URL |
[7] |
U. Krupp, Int. Mater. Rev. 50 (2005) 83-97.
DOI URL |
[8] |
R. Bricknell, D. Woodford, Metall. Mater. Trans. A 12 (1981) 425-433.
DOI URL |
[9] |
R. Bricknell, D. Woodford, Acta Metall. 30 (1982) 257-264.
DOI URL |
[10] |
U. Krupp, K. Wackermann, H.J. Christ, M.H. Colliander, K. Stiller, Oxid. Met. 88 (2017) 3-14.
DOI URL |
[11] |
H.W. Liu, Y. Oshida, Theor. Appl. Fract. Mech. 6 (1986) 85-94.
DOI URL |
[12] |
H. Kitaguchi, H. Li, H. Evans, R. Ding, I. Jones, G. Baxter, P. Bowen, Acta Mater. 61 (2013) 1968-1981.
DOI URL |
[13] |
H. Kitaguchi, M. Moody, H. Li, H. Evans, M. Hardy, S. Lozano-Perez, Scr. Mater. 97 (2015) 41-44.
DOI URL |
[14] |
S. Pedrazzini, D.J. Child, T. Aarholt, C. Ball, M. Dowd, A. Girling, H. Cockings, K. Perkins, M.C. Hardy, H.J. Stone, P.A.J. Bagot, Metall. Mater. Trans. A 49 (2018) 3908-3922.
DOI URL |
[15] |
A.A. Németh, D.J. Crudden, D.M. Collins, V. Kuksenko, C. Liebscher, D.E. Arm-strong, A.J. Wilkinson, R.C. Reed, Metall. Mater. Trans. A 49 (2018) 3923-3937.
DOI URL |
[16] |
R. Jiang, D. Proprentner, M. Callisti, B. Shollock, X. Hu, Y. Song, P. Reed, Corros. Sci. 139 (2018) 141-154.
DOI URL |
[17] |
A. Németh, D. Crudden, D. Armstrong, D. Collins, K. Li, A. Wilkinson, C. Grovenor, R. Reed, Acta Mater. 126 (2017) 361-371.
DOI URL |
[18] |
J. Svoboda, F. Fischer, P. Fratzl, A. Kroupa, Acta Mater. 50 (2002) 1369-1381.
DOI URL |
[19] |
J. Svoboda, F. Fischer, P. Fratzl, Acta Mater. 54 (2006) 3043-3053.
DOI URL |
[20] |
N. Swaminathan, J. Qu, Y. Sun, Philos. Mag. 87 (2007) 1705-1721.
DOI URL |
[21] |
L. Zhao, J. Eng. Mater. Technol. 133 (2011) 031002.
DOI URL |
[22] |
A. Karabela, L. Zhao, B. Lin, J. Tong, M. Hardy, Mater. Sci. Eng. A 567 (2013) 46-57.
DOI URL |
[23] | J. Li, R. Oriani, L. Darken, Z. Für, Phys. Chem. 49 (1966) 271-290. |
[24] |
D. Bika, C. McMahon, Acta Metall. Et Mater. 43 (1995) 1909-1916.
DOI URL |
[25] |
L. Onsager, Phys. Rev. 37 (1931) 405.
DOI URL |
[26] |
B. Sundman, J. Ågren, J. Phys. Chem. Solids 42 (1981) 297-301.
DOI URL |
[27] |
B. Sundman, B. Jansson, J.O. Andersson, Calphad 9 (1985) 153-190.
DOI URL |
[28] |
B. Dyson, Mater. Sci. Technol. 25 (2009) 213-220.
DOI URL |
[29] | U. Kocks, A. Argon, M. Ashby, Thermodynamics and Kinetics of Slip, Pergamon Press, 1975 Progress in Materials Science. |
[30] |
T. Pollock, A. Argon, Acta Metall. Et Mater. 40 (1992) 1-30.
DOI URL |
[31] | H. Basoalto, S. Sondhi, B. Dyson, M. McLean, K.A. Green, in: Proceedings of the Superalloys, 2004, pp. 897-906. |
[32] | Analysis User’s Guide, Dassault Systems, 2013. |
[33] |
G. Chandhini, Y. Sanyasiraju, Int. J. Numer. Methods Eng. 72 (2007) 352-378.
DOI URL |
[34] |
E.F. Bollig, N. Flyer, G. Erlebacher, J. Comput. Phys. 231 (2012) 7133-7151.
DOI URL |
[35] |
V. Shankar, G.B. Wright, A.L. Fogelson, R.M. Kirby, Int. J. Numer. Methods Fluids 75 (2014) 1-22.
DOI URL |
[36] | R.L. Hardy, J. Geophys. Res. 76 (1971) 1905-1915. |
[37] | R. Franke, Math. Comput. 38 (1982) 181-200. |
[38] | E.J. Kansa, Comput. Math. Appl. 19 (1990) 147-161. |
[39] |
J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, Calphad 26 (2002) 273-312.
DOI URL |
[40] |
S. Sondhi, B. Dyson, M. McLean, Acta Mater. 52 (2004) 1761-1772.
DOI URL |
[41] |
A. Manonukul, F. Dunne, D. Knowles, Acta Mater. 50 (2002) 2917-2931.
DOI URL |
[42] |
J. Coakley, H. Basoalto, D. Dye, Acta Mater. 58 (2010) 4019-4028.
DOI URL |
[43] | Gavin Yearwood, 2017, Location Specific Properties in an Aerospace Alloy (Doc-toral dissertation, University of Birmingham) |
[44] |
M. Anderson, F. Schulz, Y. Lu, H. Kitaguchi, P. Bowen, C. Argyrakis, H. Basoalto, Acta Mater. 191 (2020) 81-100.
DOI URL |
[45] |
Z. Azari, M. Abbadi, H. Moustabchir, M. Lebienvenu, Int. J. Fatigue 30 (2008) 517-527.
DOI URL |
[46] | G. Martin, B. Perraillon, in: Grain Boundary Structure and Kinetics, ASM, Metals Park, OH, 1980, pp. 239-291. |
[47] |
N. Peterson, Int. Met. Rev. 28 (1983) 65-91.
DOI URL |
[48] |
H. Evans, H. Li, P. Bowen, Scr. Mater. 69 (2013) 179-182.
DOI URL |
[49] |
K.S. Chan, M.P. Enright, J.P. Moody, B. Hocking, S.H. Fitch, J. Eng. Gas Turbines Power 134 (2012) 122501.
DOI URL |
[50] |
L. Viskari, M. Hörnqvist, K. Moore, Y. Cao, K. Stiller, Acta Mater. 61 (2013) 3630-3639.
DOI URL |
[51] |
L. Viskari, S. Johansson, K. Stiller, Mater. High Temp. 28 (2011) 336-341.
DOI URL |
[52] |
K.S. Chan, Metall. Mater. Trans. A 45 (2014) 3454-3466.
DOI URL |
[53] | S. Slatcher, J. Knott, Fracture 84 (1984) 1473-1479. |
[54] |
J.R. Rice, J. Appl. Mech. 35 (1968) 379-386.
DOI URL |
[55] |
R.M. McMeeking, J. Mech. Phys. Solids 25 (1977) 357-381.
DOI URL |
[56] |
B. Lin, L. Zhao, J. Tong, Eng. Fract. Mech. 78 (2011) 2174-2192.
DOI URL |
[57] | C. Cornet, L.G. Zhao, J Tong, in: Key Engineering Materials, 417, Trans Tech Publications, 2010, pp. 117-120. |
[58] |
L. Zhao, J. Tong, J. Mech. Phys. Solids 56 (2008) 3363-3378.
DOI URL |
[59] |
S. Cruchley, H. Evans, M. Taylor, Mater. High Temp. 33 (2016) 1-11.
DOI URL |
[60] |
H. Li, J. Sun, M. Hardy, H. Evans, S. Williams, T. Doel, P. Bowen, Acta Mater. 90 (2015) 355-369.
DOI URL |
[61] | J. O’Hanlon, M. Hardy, D. Child, B. Foss, P. Withers, M. Bache, in: Proceedings of the MATEC Web of Conferences, 14, EDP Sciences, 2014, p. 04003. |
[62] | T.P. Gabb, J. Telesman, P.T. Kantzos, J.W. Smith, P.F. Browning, in: Proceedings of the Superalloys, 2004, pp. 269-274. |
[63] |
M. Reger, L. Rémy, Metall. Trans. A 19 (1988) 2259-2268.
DOI URL |
[64] |
G. Viswanathan, D.E. Mills, M.J. Mills, Metall. Mater. Trans. A 50 (2019) 5574-5580.
DOI |
[65] |
L. Guo, Y. Ren, L. Kong, W. Chim, S. Chiam, Nat. Commun. 7 (2016) 13148.
DOI PMID |
[66] | A. Suzuki, K. Kawagishi, T. Yokokawa, T. Kobayashi, H. Harada, in: Proceedings of the Superalloys, 2012, pp. 321-329. |
[67] | J. Telesman, T. Gabb, A. Garg, P. Bonacuse, J. Gayda, in: Proceedings of the Su-peralloys, 2008, pp. 807-816. |
[68] | J. Telesman, P. Kantzos, J. Gayda, P. Bonacuse, A. Prescenzi, in: Proceedings of the Tenth International Symposium on Superalloys, 2004, pp. 215-224. |
[69] | A. Gittins, Met. Sci. J. 1 (1967) 214-216. |
[70] | H.C. Basoalto, On a Constitutive Desciption of Two-phase Nickle-based Super-alloy (Report No. PRISM-2020), PRISM2, University of Birmingham (2020). |
[1] | Wenrui An, Satoshi Utada, Xiaotong Guo, Stoichko Antonov, Weiwei Zheng, Jonathan Cormier, Qiang Feng. Thermal cycling creep properties of a directionally solidified superalloy DZ125 [J]. J. Mater. Sci. Technol., 2022, 104(0): 269-284. |
[2] | Fuyu Dong, Yuexin Chu, Mengyuan He, Yue Zhang, Weidong Li, Peter K. Liaw, Binbin Wang, Liangshun Luod, Yanqing Su, Robert O. Ritchie, Xiaoguang Yuan. Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation [J]. J. Mater. Sci. Technol., 2022, 102(0): 36-45. |
[3] | Xinghong Zhang, Baihe Du, Ping Hu, Yuan Cheng, Jiecai Han. Thermal response, oxidation and ablation of ultra-high temperature ceramics, C/SiC, C/C, graphite and graphite-ceramics [J]. J. Mater. Sci. Technol., 2022, 102(0): 137-158. |
[4] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[5] | Nikolaus Jäger, Michael Meindlhumer, Michal Zitek, Stefan Spor, Hynek Hruby, Farwah Nahif, Jaakko Julin, Martin Rosenthal, Jozef Keckes, Christian Mitterer, Rostislav Daniel. Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings [J]. J. Mater. Sci. Technol., 2022, 100(0): 91-100. |
[6] | Wanjun He, Qunfeng Zeng, Chao Yan, Jianing Zhu, Danli Zhang, Jiangnan Cao. Loading rate and holding load dependent room temperature nanoindentation creep behavior of 60NiTi alloy: Individual and coupling effects [J]. J. Mater. Sci. Technol., 2022, 101(0): 173-186. |
[7] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[8] | Z.R. Xu, J.C. Qiao, J. Wang, E. Pineda, D. Crespo. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep [J]. J. Mater. Sci. Technol., 2022, 99(0): 39-47. |
[9] | Qiyun Zhang, Renquan Wu, Yunhong Zhou, Qilang Lin, Changqing Fang. A novel surface-oxidized rigid carbon foam with hierarchical macro-nanoporous structure for efficient removal of malachite green and lead ion [J]. J. Mater. Sci. Technol., 2022, 103(0): 15-28. |
[10] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
[11] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[12] | Zhixin Zhang, Jiangkun Fan, Ruifeng Li, Hongchao Kou, Zhiyong Chen, Qingjiang Wang, Hailong Zhang, Jian Wang, Qi Gao, Jinshan Li. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titanium alloy sheet [J]. J. Mater. Sci. Technol., 2021, 75(0): 265-275. |
[13] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[14] | Kunming Pan, Yanping Yang, Shizhong Wei, Honghui Wu, Zhili Dong, Yuan Wu, Shuize Wang, Laiqi Zhang, Junping Lin, Xinping Mao. Oxidation behavior of Mo-Si-B alloys at medium-to-high temperatures [J]. J. Mater. Sci. Technol., 2021, 60(0): 113-127. |
[15] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||