J. Mater. Sci. Technol. ›› 2022, Vol. 104: 214-223.DOI: 10.1016/j.jmst.2021.06.059
• Research Article • Previous Articles Next Articles
Qijing Sun(), David M Miskovic*(
), Michael Ferry*(
)
Received:
2021-06-01
Revised:
2021-06-29
Accepted:
2021-06-30
Published:
2022-03-30
Online:
2022-03-30
Contact:
Qijing Sun,David M Miskovic,Michael Ferry
About author:
m.ferry@unsw.edu.au (M. Ferry).Qijing Sun, David M Miskovic, Michael Ferry. Probing the formation of ultrastable metallic glass from structural heterogeneity[J]. J. Mater. Sci. Technol., 2022, 104: 214-223.
Fig. 1. DSC traces at a heating rate of 20 K/min. (a-c) DSC for TFMGs deposited at different rates. The glass transition temperature (Tg), which is defined from the onset of the transformation, is indicated by the intersection of the purple lines [24]. (d)-(f) Comparison of TFMGs with different compositions deposited at similar rates.
Fig. 2. The effect of deposition rate on MG stability and structural heterogeneity. (a) ΔTg as a function of deposition rate. The inset in (a) provides greater detail of the highlighted blue section with linear fits applied to the data for deposition rates ranging from ~20 nm/min to ~10 nm/min and the maximum values for ΔTg. The critical deposition rate for an SMG is defined as the tangential intersection of the linear fits and highlighted in the inset by pink arrows. (b) Correlation length ξ as a function of deposition rate.
Composition | ZrCu | ZrCuAl | ZrCuAlMo |
---|---|---|---|
ξBMG (nm) | 10.4±0.67 | 7.28±0.54 | 9.85±1.0 |
ξSMG (nm) | 3.78±0.22 | 3.61±0.30 | 3.75±0.40 |
ΔξSMG/ξBMG | -63.7%±2.7% | -50.4%±4.8% | -61.9%±4.9% |
Tg,BMG (K) | 670±2 | 699±1 | 703±2 |
Tg,SMG (K) | 755±1 | 768±1 | 777±1 |
ΔTg,SMG/Tg,BMG | 12.7%±0.4% | 9.87%±0.3% | 10.5%±0.4% |
Critical deposition rate (nm/min) | 8.7±0.3 | 14.3±0.5 | 12.8±0.4 |
Slow β relaxation | Hump [ | Excess wing [ | Hump [ |
Table 1 Characteristic parameters for TFMGs. $\text{ }\!\!\Delta\!\!\text{ }{{\xi }_{\text{SMG}}}={{\xi }_{\text{SMG}}}-{{\xi }_{\text{BMG}}}$.$\text{ }\!\!\Delta\!\!\text{ }{{T}_{\text{g},\text{SMG}}}={{T}_{\text{g},\text{SMG}}}-{{T}_{\text{g},\text{BMG}}}$. ${{\xi }_{\text{SMG}}}$ and ${{T}_{\text{g},\text{SMG}}}$ are the average values for TFMGs deposited at rates lower than the critical deposition rates. ${{\xi }_{\text{BMG}}}$ and ${{T}_{\text{g},\text{BMG}}}$ are the correlation length and glass transition temperature for BMGs.
Composition | ZrCu | ZrCuAl | ZrCuAlMo |
---|---|---|---|
ξBMG (nm) | 10.4±0.67 | 7.28±0.54 | 9.85±1.0 |
ξSMG (nm) | 3.78±0.22 | 3.61±0.30 | 3.75±0.40 |
ΔξSMG/ξBMG | -63.7%±2.7% | -50.4%±4.8% | -61.9%±4.9% |
Tg,BMG (K) | 670±2 | 699±1 | 703±2 |
Tg,SMG (K) | 755±1 | 768±1 | 777±1 |
ΔTg,SMG/Tg,BMG | 12.7%±0.4% | 9.87%±0.3% | 10.5%±0.4% |
Critical deposition rate (nm/min) | 8.7±0.3 | 14.3±0.5 | 12.8±0.4 |
Slow β relaxation | Hump [ | Excess wing [ | Hump [ |
Fig. 3. Statistical and geometrical analyses of AM-AFM images. (a) and (b) Typical AM-AFM height and phase shift images for ZrCuAlMo TFMG deposited at ~242 nm/min; (c) Roughness as a function of deposition rate; (d) and (e) Edis maps calculated from (b). The HDRs are shown in green in (d), whereas the LDRs are shown in blue in (e); (f) Distribution spectrum for Edis map shown in (d) and (e); (g) and (h) The influence of deposition rate on Dmax/Dmin and Req.
Fig. 4. The frequency distributions of Req. (a, b) Effect of deposition rate on the distribution of Req for ZrCuAlMo TFMGs; (c)-(e) Comparison of Req distribution for TFMGs of different compositions deposited at similar rates. The curves were fitted to a lognormal distribution function (Adj. R2 > 0.90).
Fig. 5. LDR behavior in TFMGs. (a)-(c) Influence of deposition rate on the accumulated size distributions of LDRs for ZrCu, ZrCuAl and ZrCuAlMo; (d)-(f) Edis maps for ZrCuAlMo TFMGs deposited at ~242 nm/min, ~21.1 nm/min and ~6.90 nm/min, respectively. The images are rendered with the same color bar. LDRs are shown in blue; (g)-(i) Comparisons of LDRs for TFMGs of different compositions deposited at similar rates.
Composition | ZrCu | ZrCuAl | ZrCuAlMo | |||||
---|---|---|---|---|---|---|---|
Cluster centre | Cu | Cu | Zr | Cu | Cu | Al/Mo | Zr |
Coordination number | 10 | 11 | 16 | 11 | 12 | 13 | 15 |
Packing efficiency (%) | 98.6-100 | 101.6 | 99.5-101 | 100 | 102 | 99.4 | 100.6-100.9 |
Table 2 Simultaneous efficiently geometrically packed clusters for the different compositions.
Composition | ZrCu | ZrCuAl | ZrCuAlMo | |||||
---|---|---|---|---|---|---|---|
Cluster centre | Cu | Cu | Zr | Cu | Cu | Al/Mo | Zr |
Coordination number | 10 | 11 | 16 | 11 | 12 | 13 | 15 |
Packing efficiency (%) | 98.6-100 | 101.6 | 99.5-101 | 100 | 102 | 99.4 | 100.6-100.9 |
[1] |
F. Zhu, H.K. Nguyen, S.X. Song, D.P. Aji, A. Hirata, H. Wang, K. Nakajima, M.W. Chen, Nat. Commun. 7 (2016) 11516.
DOI PMID |
[2] |
D.P. Wang, J.C. Qiao, C.T. Liu, Mater. Res. Lett. 7 (2019) 305-311.
DOI |
[3] |
S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Nature 524 (2015) 200-203.
DOI URL |
[4] |
S. Sohrabi, M.C. Ri, H.Y. Jiang, L. Gu, P. Wen, Y.H. Sun, W.H. Wang, Intermetallics 111 (2019) 106497.
DOI URL |
[5] |
T. Ichitsubo, E. Matsubara, T. Yamamoto, H.S. Chen, N. Nishiyama, J. Saida, K. Anazawa, Phys. Rev. Lett. 95 (2005) 245501.
PMID |
[6] |
K. Kosiba, D. Şopu, S. Scudino, L. Zhang, J. Bednarcik, S. Pauly, Int. J. Plast. 119 (2019) 156-170.
DOI URL |
[7] |
F. Zhu, S. Song, K.M. Reddy, A. Hirata, M. Chen, Nat. Commun. 9 (2018) 3965.
DOI URL |
[8] |
Q. An, K. Samwer, M.D. Demetriou, M.C. Floyd, D.O. Duggins, W.L. Johnson, W.A. Goddard, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 7053-7058.
DOI URL |
[9] |
N. Wang, J. Ding, F. Yan, M. Asta, R.O. Ritchie, L. Li, NPJ Comput. Mater. 4 (2018) 19.
DOI URL |
[10] |
J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.
DOI |
[11] |
Q.J. Sun, L.N. Hu, C. Zhou, H.J. Zheng, Y.Z. Yue, J. Chem. Phys. 143 (2015) 164504.
DOI URL |
[12] | J.F. Zeng, J.P. Chu, Y.C. Chen, A. Volland, J.J. Blandin, S. Gravier, Y. Yang, Inter-metallics 44 (2014) 121-127. |
[13] |
Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen, Phys. Rev. Lett. 106 (2011) 125504.
PMID |
[14] |
M. Gao, J.H. Perepezko, Nano Lett 20 (2020) 7558-7565.
DOI URL |
[15] |
Y. Yang, J.F. Zeng, A. Volland, J.J. Blandin, S. Gravier, C.T. Liu, Acta Mater 60 (2012) 5260-5272.
DOI URL |
[16] |
S.D. Feng, L. Qi, L.M. Wang, P.F. Yu, S.L. Zhang, M.Z. Ma, X.Y. Zhang, Q. Jing, K.L. Ngai, A.L. Greer, G. Li, R.P. Liu, Scr. Mater. 115 (2016) 57-61.
DOI URL |
[17] |
Q.J. Sun, C. Zhou, Y.Z. Yue, L.N. Hu, J. Phys. Chem. Lett. 5 (2014) 1170-1174.
DOI URL |
[18] |
H.B. Yu, W.H. Wang, H.Y. Bai, K. Samwer, Natl. Sci. Rev. 1 (2014) 429-461.
DOI URL |
[19] |
H. Lou, Z. Zeng, F. Zhang, S. Chen, P. Luo, X. Chen, Y. Ren, V.B. Prakapenka, C. Prescher, X. Zuo, T. Li, J. Wen, W.-H. Wang, H. Sheng, Q. Zeng, Nat. Commun. 11 (2020) 314.
DOI URL |
[20] |
S. Korkmaz, İ.A. Kariper, J. Non-Cryst. Solids 527 (2020) 119753.
DOI URL |
[21] |
W. Zhang, Q.C. Xiang, C.Y. Ma, Y.L. Ren, K.Q. Qiu, J. Alloys Compd. 825 (2020) 153997.
DOI URL |
[22] | C.S. Chen, P. Yiu, C.-L. Li, J.P. Chu, C.-H. Shek, C.-H. Hsueh, Mater. Sci.Eng. A 608 (2014) 258-264. |
[23] |
H.B. Yu, Y. Luo, K. Samwer, Adv. Mater. 25 (2013) 5904-5908.
DOI URL |
[24] |
P. Luo, C.R. Cao, F. Zhu, Y.M. Lv, Y.H. Liu, P. Wen, H.Y. Bai, G. Vaughan, M. di Michiel, B. Ruta, W.H. Wang, Nat. Commun. 9 (2018) 1389.
DOI PMID |
[25] | D.P.B. Aji, A. Hirata, F. Zhu, L. Pan, K. Madhav Reddy, S. Song, Y. Liu, T. Fujita, S. Kohara, M. Chen, Preprint at https://arxiv.org/abs/1306.1575, 2013. |
[26] |
M. Liu, C.R. Cao, Y.M. Lu, W.H. Wang, H.Y. Bai, Appl. Phys. Lett. 110 (2017) 031901.
DOI URL |
[27] |
G.B. Bokas, L. Zhao, D. Morgan, I. Szlufarska, J. Alloys Compd. 728 (2017) 1110-1115.
DOI URL |
[28] |
Q.J. Sun, D.M. Miskovic, K. Laws, H. Kong, X. Geng, M. Ferry, Appl. Surf. Sci. 533 (2020) 147453.
DOI URL |
[29] | Q.J. Sun, D.M. Miskovic, M. Ferry, Mater. Today Phys 18 (2021) 100370. |
[30] | S. Singh, M.D. Ediger, J.J. de Pablo, Nat.Mater. 12 (2013) 139-144. |
[31] |
K.L. Kearns, P. Krzyskowski, Z. Devereaux, J. Chem. Phys. 146 (2017) 203328.
DOI URL |
[32] |
X. Cao, H. Zhang, Y. Han, Nat. Commun. 8 (2017) 362.
DOI URL |
[33] |
C.R. Cao, Y.M. Lu, H.Y. Bai, W.H. Wang, Appl. Phys. Lett. 107 (2015) 141606.
DOI URL |
[34] |
C.R. Cao, L. Yu, J.H. Perepezko, Appl. Phys. Lett. 116 (2020) 231601.
DOI URL |
[35] |
C. Liu, R. Maaß, Adv. Funct. Mater. 28 (2018) 1800388.
DOI URL |
[36] |
N. Wang, J. Ding, P. Luo, Y. Liu, L. Li, F. Yan, Mater. Res. Lett. 6 (2018) 655-661.
DOI URL |
[37] |
Y.M. Lu, J.F. Zeng, S. Wang, B.A. Sun, Q. Wang, J. Lu, S. Gravier, J.J. Bladin, W.H. Wang, M.X. Pan, C.T. Liu, Y. Yang, Sci. Rep. 6 (2016) 29357.
DOI PMID |
[38] |
Q. Yang, S.X. Peng, Z. Wang, H.B. Yu, Natl. Sci. Rev. 7 (2020) 1896-1905.
DOI PMID |
[39] |
R. Zhao, H.Y. Jiang, P. Luo, L.Q. Shen, P. Wen, Y.H. Sun, H.Y. Bai, W.H. Wang, Phys. Rev. B 101 (2020) 094203.
DOI URL |
[40] |
T. Wang, L. Wang, Q. Wang, Y. Liu, X. Hui, Sci. Rep. 7 (2017) 1238.
DOI PMID |
[41] |
H.B. Yu, K. Samwer, W.H. Wang, H.Y. Bai, Nat. Commun. 4 (2013) 2204.
DOI URL |
[42] |
Q.J. Sun, D.M. Miskovic, H. Kong, M. Ferry, Appl. Surf. Sci. 546 (2021) 149048.
DOI URL |
[43] |
A. Sepulveda, M. Tylinski, A. Guiseppi-Elie, R. Richert, M.D. Ediger, Phys. Rev. Lett. 113 (2014) 045901.
DOI URL |
[44] |
Q. Yang, J. Huang, X.H. Qin, F.X. Ge, H.B. Yu, Sci. China Mater. 63 (2019) 157-164.
DOI URL |
[45] |
T. Wang, L. Hu, Y. Liu, X. Hui, Mater. Sci. Eng. A 744 (2019) 316-323.
DOI URL |
[46] |
L. Hu, Y. Yue, J. Phys. Chem. B 112 (2008) 9053-9057.
DOI URL |
[47] |
G. Parisi, F. Sciortino, Nat. Mater. 12 (2013) 94-95.
DOI URL |
[48] |
C. Zhou, Y. Yue, L. Hu, J. Appl. Phys. 120 (2016) 225110.
DOI URL |
[49] |
L.N. Hu, Y.Z. Yue, J. Phys. Chem. C 113 (2009) 15001-15006.
DOI URL |
[50] |
D.D. Liang, X.D. Wang, Y. Ma, K. Ge, Q.P. Cao, J.Z. Jiang, J. Alloys Compd. 577 (2013) 257-260.
DOI URL |
[51] |
H.B. Yu, M.H. Yang, Y. Sun, F. Zhang, J.B. Liu, C.Z. Wang, K.M. Ho, R. Richert, K. Samwer, J. Phys. Chem. Lett. 9 (2018) 5877-5883.
DOI URL |
[52] |
J.H. Mangalara, M.D. Marvin, D.S. Simmons, J. Phys. Chem. B 120 (2016) 4861-4865.
DOI URL |
[53] |
H.B. Yu, M. Tylinski, A. Guiseppi-Elie, M.D. Ediger, R. Richert, Phys. Rev. Lett. 115 (2015) 185501.
DOI PMID |
[54] |
C. Rodriguez-Tinoco, M. Rams-Baron, K.L. Ngai, K. Jurkiewicz, J. Ro-driguez-Viejo, M. Paluch, Phys. Chem. Chem. Phys. 20 (2018)3939-3945.
DOI URL |
[55] |
K.L. Kearns, S.F. Swallen, M.D. Ediger, T. Wu, L. Yu, J. Chem. Phys. 127 (2007) 154702.
DOI URL |
[56] |
Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95 (2005) 025701.
DOI PMID |
[57] |
S. Ashtekar, J. Lyding, M. Gruebele, Phys. Rev. Lett. 109 (2012) 166103.
PMID |
[58] |
G. Kumar, P.A. Staffier, J. Blawzdziewicz, U.D. Schwarz, J. Schroers, Appl. Phys. Lett. 97 (2010) 101907.
DOI URL |
[59] |
K.J. Laws, D.B. Miracle, M. Ferry, Nat. Commun. 6 (2015) 8123.
DOI PMID |
[60] |
D.B. Miracle, Nat. Mater. 3 (2004) 697-702.
PMID |
[61] |
K.J. Dawson, K.L. Kearns, L. Yu, W. Steffen, M.D. Ediger, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 15165-15170.
DOI URL |
[62] |
S. Singh, J.J. de Pablo, J. Chem. Phys. 134 (2011) 194903.
DOI URL |
[63] |
K.J. Dawson, L. Zhu, L. Yu, M.D. Ediger, J. Phys. Chem. B 115 (2011) 455-463.
DOI URL |
[64] |
M.D. Ediger, J. de Pablo, L. Yu, Acc. Chem. Res. 52 (2019) 407-414.
DOI URL |
[65] |
S.S. Dalal, M.D. Ediger, J. Phys. Chem. Lett. 3 (2012) 1229-1233.
DOI URL |
[1] | Siyi Di, Qianqian Wang, Yiyuan Yang, Tao Liang, Jing Zhou, Lin Su, Kuibo Yin, Qiaoshi Zeng, Litao Sun, Baolong Shen. Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1 bulk metallic glass upon cryogenic cycling treatment [J]. J. Mater. Sci. Technol., 2022, 97(0): 20-28. |
[2] | Jing Zhou, Qianqian Wang, Qiaoshim Zeng, Kuibo Yin, Anding Wang, Junhua Luan, Litao Sun, Baolong Shen. A plastic FeNi-based bulk metallic glass and its deformation behavior [J]. J. Mater. Sci. Technol., 2021, 76(0): 20-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||