J. Mater. Sci. Technol. ›› 2022, Vol. 104: 202-213.DOI: 10.1016/j.jmst.2021.06.053
• Research Article • Previous Articles Next Articles
Sheng Ding*(), Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto
Received:
2021-04-26
Revised:
2021-06-19
Accepted:
2021-06-30
Published:
2022-03-30
Online:
2021-09-08
Contact:
Sheng Ding
About author:
* E-mail address: sheng.ding@cem.t.u-tokyo.ac.jp (S. Ding).Sheng Ding, Jingwei Zhang, Sabrina Alam Khan, Jun Yanagimoto. Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches[J]. J. Mater. Sci. Technol., 2022, 104: 202-213.
Fig. 1. (a) EBSD orientation map of the homogenized microstructure of the studied aluminum alloy. (b) Misorientation angle and grain size distributions of initial microstructure.
Fig. 3. Stress-strain curves obtained from the double-pass compression test at different temperatures of (c) 350, (d) 400, and (e) 450 ℃; at different pre-strains of (b) 0.04 and (f) 0.12; and at different strain rates of (a) 0.1 and (g) 10/s.
Fig. 4. (a) Typical stress-strain curve and the subsequent stress relaxation curve obtained from the stress relaxation test. Stress relaxation curves under experimental conditions of different (b) temperatures, (c) pre-strains, and (d) strain rates.
Constants | k (J/K) | vD (/s) | α | M | E (GPa) | b (nm) |
---|---|---|---|---|---|---|
Value | 1.38×10-23 | 8.74×1012 | 0.33 | 3.06 | 68 | 0.286 |
Table 1 Utilized constants in the recovery model for the studied aluminum alloy.
Constants | k (J/K) | vD (/s) | α | M | E (GPa) | b (nm) |
---|---|---|---|---|---|---|
Value | 1.38×10-23 | 8.74×1012 | 0.33 | 3.06 | 68 | 0.286 |
Temperature (℃), Strain rate (/s), pre-strain | 350, 1, 0.08 | 400, 1, 0.08 | 450, 1, 0.08 | 400, 1, 0.04 | 400, 1, 0.12 | 400, 0.1, 0.08 | 400, 10, 0.08 | |
---|---|---|---|---|---|---|---|---|
DCT | Q0 (kJ/mol) | 134.30 | 149.78 | 146.01 | 139.02 | 162.36 | / | 136.36 |
V (b3) | 39.33 | 71.16 | 138.90 | 68.60 | 95.99 | / | 25.44 | |
SRT | Q0 (kJ/mol) | 138.60 | 151.20 | 147.28 | 150.91 | 149.25 | / | 143.07 |
V (b3) | 26.13 | 79.9 | 178.78 | 75.51 | 78.73 | / | 54.22 |
Table 2 Activation energy and activation volume of static recovery obtained from the double-pass compression and stress relaxation tests.
Temperature (℃), Strain rate (/s), pre-strain | 350, 1, 0.08 | 400, 1, 0.08 | 450, 1, 0.08 | 400, 1, 0.04 | 400, 1, 0.12 | 400, 0.1, 0.08 | 400, 10, 0.08 | |
---|---|---|---|---|---|---|---|---|
DCT | Q0 (kJ/mol) | 134.30 | 149.78 | 146.01 | 139.02 | 162.36 | / | 136.36 |
V (b3) | 39.33 | 71.16 | 138.90 | 68.60 | 95.99 | / | 25.44 | |
SRT | Q0 (kJ/mol) | 138.60 | 151.20 | 147.28 | 150.91 | 149.25 | / | 143.07 |
V (b3) | 26.13 | 79.9 | 178.78 | 75.51 | 78.73 | / | 54.22 |
Fig. 5. Static softening fractions under various experimental conditions of (a) temperatures, (b) pre-strains, and (c) strain rates obtained from double-pass compression tests; and (d) temperatures, (e) pre-strains, and (f) strain rates obtained from stress relaxation tests.
Fig. 6. GAM maps for samples deformed at 400 ℃, with a strain rate of 1/s and a pre-strain of 0.5 with different interpass time of (a) 0 s, (b) 1 s, and (c) 100 s in the DCT case. GAM maps for samples deformed at 400 ℃, with a strain rate of 1/s and a pre-strain of 0.08 with different interpass time of (d) 0 s, (e) 1 s, and (f) 100 s in the DCT case. (g) Evolution of GAM distributions in the case of recrystallization and recovery.
Fig. 7. GAM maps for samples deformed at 400 ℃, with the strain rate of 1/s and a pre-strain of 0.08 with different interpass time of (a) 0 s, (b) 1 s, and (c) 100 s in the SRT case. (d) Comparisons of GAM distributions between the DCT and SRT cases. Evolution of (e) microhardness, average grain size, and average GAM value, (f) average misorientation angle, and length of subgrains with misorientation angles within the range of 2° to 5° during static softening under the DCT and SRT cases.
Fig. 8. GAM maps for samples deformed at a strain rate of 1/s and a pre-strain of 0.08 under different temperatures and interpass time of (a) 350 ℃, 0 s, (b) 350 ℃, 100 s, (d) 450 ℃, 0 s, and (e) 450 ℃, 100 s in the DCT case. (c) Evolution of microhardness, average grain size, average GAM value, and (f) GAM distribution under the corresponding experimental conditions.
Fig. 9. GAM maps for samples deformed at 400 ℃ and with a strain rate of 1/s under different pre-strains and interpass time of (a) 0.04, 0 s, (b) 0.04, 100 s, (d) 0.12, 0 s, and (e) 0.12, 100 s in the DCT case. (c) Evolution of microhardness, average grain size, average GAM value, and (f) GAM distribution under the corresponding experimental conditions.
Fig. 10. GAM maps for samples deformed at 400℃ with a pre-strain of 0.08 under different strain rates and interpass time of (a) 0.1/s, 0 s, (b) 0.1/s, 100 s, (d) 10/s, 0 s, and (e) 10/s, 100 s in the DCT case. (c) Evolution of microhardness, average grain size, average GAM value, and (f) GAM distribution under the corresponding experimental conditions.
Fig. 11. Static softening fractions obtained from stress, microhardness and microstructure under the core experimental conditions in (a) double-pass compression test and (b) stress relaxation test.
[1] |
B. Zhang, P.K. Liaw, J. Brechtl, J. Ren, X. Guo, Y. Zhang, J. Alloys Compd. 820 (2020) 153092, doi: 10.1016/j.jallcom.2019.153092.
DOI URL |
[2] |
O. Engler, S. Miller-Jupp, J. Alloys Compd. 689 (2016) 998-1010, doi: 10.1016/j.jallcom.2016.08.070.
DOI URL |
[3] |
Y. Gao, D. Feng, M. Moradi, C. Yang, Y. Jin, D. Liu, D. Xu, X. Chen, F. Wang, Corros. Sci. 180 (2021) 109188, doi: 10.1016/j.corsci.2020.109188.
DOI URL |
[4] |
S. Toros, F. Ozturk, I. Kacar, J. Mater. Process. Technol. 207 (2008) 1-12, doi: 10.1016/j.jmatprotec.2008.03.057.
DOI URL |
[5] |
S. Ding, S.A. Khan, J. Yanagimoto, Mater. Sci. Eng. A 728 (2018) 133-143, doi: 10.1016/j.msea.2018.05.025.
DOI URL |
[6] |
H.J. McQueen, S. Spigarelli, M.E. Kassner, E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, 2016, doi: 10.1201/b11227.
DOI |
[7] |
C.K.C. Lieou, H.M. Mourad, C.A. Bronkhorst, Int. J. Plast. 119 (2019) 171-187, doi: 10.1016/j.ijplas.2019.03.005.
DOI URL |
[8] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. (2020), doi: 10.1016/j.jmst.2020.01.022.
DOI |
[9] |
Y. Pang, D. Sun, Q. Gu, K.C. Chou, X. Wang, Q. Li, Cryst. Growth Des. (2016), doi: 10.1021/acs.cgd.6b00187.
DOI |
[10] |
Y. Pang, Q. Li, Scr. Mater. (2017), doi: 10.1016/j.scriptamat.2016.12.015.
DOI |
[11] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. (2020), doi: 10.1016/j.scriptamat.2019.12.016.
DOI |
[12] |
Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, Q. Li, J. Mater. Sci. Technol. 65 (2021) 190-201, doi: 10.1016/j.jmst.2020.04.075.
DOI URL |
[13] |
Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. (2020), doi: 10.1016/j.actamat.2020.01.039.
DOI |
[14] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130-207, doi: 10.1016/j.pmatsci.2013.09.002.
DOI URL |
[15] |
H. Stüwe, A. Padilha, F. Siciliano, Mater. Sci. Eng. A 333 (2002) 361-367, doi: 10.1016/S0921-5093(01)01860-3.
DOI URL |
[16] |
A. Rollett, F. Humphreys, G.S. Rohrer, M. Hatherly, Elsevier, 2004, doi: 10.1016/B978-0-08-044164-1.X5000-2.
DOI |
[17] |
J. Tang, F. Jiang, C. Luo, G. Bo, K. Chen, J. Teng, D. Fu, H. Zhang, Int. J. Plast. 134 (2020) 102809, doi: 10.1016/j.ijplas.2020.102809.
DOI URL |
[18] |
E.R. Sá, S.F. Rodrigues, C. Aranas, F. Siciliano, G.S. Reis, J.M. Cabrera-Marrero, E.S. Silva, J. Mater. Res. Technol. 9 (2020) 7807-7816, doi: 10.1016/j.jmrt.2020.05.066.
DOI URL |
[19] |
N. Mavrikakis, C. Detlefs, P.K. Cook, M. Kutsal, A.P.C. Campos, M. Gauvin, P.R. Calvillo, W. Saikaly, R. Hubert, H.F. Poulsen, A. Vaugeois, H. Zapolsky, D. Mangelinck, M. Dumont, C. Yildirim, Acta Mater. 174 (2019) 92-104, doi: 10.1016/j.actamat.2019.05.021.
DOI |
[20] |
M. Winning, C. Schäfer, Mater. Sci. Eng. A 419 (2006) 18-24, doi: 10.1016/j.msea.2006.01.053.
DOI URL |
[21] |
M. Džubinský, Z. Husain, W.M. Van Haaften, Mater. Charact. 52 (2004) 93-102, doi: 10.1016/j.matchar.2004.03.006.
DOI URL |
[22] |
M. Zhang, A.F. Gourgues-Lorenzon, E.P. Busso, H. Luo, M. Huang, Acta Mater. 153 (2018) 23-34, doi: 10.1016/j.actamat.2018.04.050.
DOI URL |
[23] |
W.J. Zhang, U. Lorenz, F. Appel, Acta Mater. 48 (2000) 2803-2813, doi: 10.1016/S1359-6454(00)00093-8.
DOI URL |
[24] |
A. Després, M. Greenwood, C.W. Sinclair, Acta Mater. 199 (2020) 116-128, doi: 10.1016/j.actamat.2020.08.013.
DOI URL |
[25] |
H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, Mater. Sci. Eng. A 538 (2012) 236-245, doi: 10.1016/j.msea.2012.01.037.
DOI URL |
[26] |
F. Cruz-Gandarilla, R.E. Bolmaro, H.F. Mendoza-león, A.M. Salcedo-Garrido, J.G. Cabañas-Moreno, J. Microsc. 275 (2019) 133-148, doi: 10.1111/jmi.12822.
DOI URL |
[27] |
S. Ding, S.A. Khan, J. Yanagimoto, Mater. Sci. Eng. A 787 (2020) 139522, doi: 10.1016/j.msea.2020.139522.
DOI URL |
[28] |
T. Suzuki, S. Takeuchi, H. Yoshinaga, Springer, 1991, doi: 10.1007/978-3-642-75774-7.
DOI |
[29] |
M. Verdier, Y. Brechet, P. Guyot, Acta Mater. 47 (1998) 127-134, doi: 10.1016/S1359-6454(98)00350-4.
DOI URL |
[30] |
F. Tang, M. Hagiwara, J.M. Schoenung, Mater. Sci. Eng. A 407 (2005) 306-314, doi: 10.1016/j.msea.2005.07.056.
DOI URL |
[31] |
F. Barlat, Int. J. Plast. 18 (2002) 919-939, doi: 10.1016/S0749-6419(01)00015-8.
DOI URL |
[32] |
D.R. Chipman, J. Appl. Phys. 31 (1960) 2012-2015, doi: 10.1063/1.1735487.
DOI URL |
[33] |
R.A. Petković, M.J. Luton, J.J. Jonas, Can. Metall. Q. 14 (1975) 137-145, doi: 10.1179/000844375795050201.
DOI URL |
[34] |
H.L. Andrade, M.G. Akben, J.J. Jonas, Metall. Trans. A. 14 (1983) 1967-1977, doi: 10.1007/BF02662364.
DOI URL |
[35] |
K.P. Rao, Y.K.D.V. Prasad, E.B. Hawbolt, J. Mater. Process. Technol. 300 (1998) 166-174, doi: 10.1016/s0924-0136(97)00414-7.
DOI |
[36] |
A.I. Fernández, B. López, J.M. Rodríguez-Ibabe, Scr. Mater. 40 (1999) 543-549, doi: 10.1016/S1359-6462(98)00452-7.
DOI URL |
[37] |
L.P. Karjalainen, J. Perttula, ISIJ Int. 36 (1996) 729-736, doi: 10.2355/isijinternational.36.729.
DOI URL |
[38] |
L.P. Karjalainen, Mater. Sci. Technol. 11 (1995) 557-565 (United Kingdom)., doi: 10.1179/mst.1995.11.6.557.
DOI URL |
[39] |
S. Vervynckt, K. Verbeken, P. Thibaux, Y. Houbaert, Steel Res. Int. 81 (2010) 234-244, doi: 10.1002/srin.200900126.
DOI URL |
[40] |
G.P. Purja Pun, Y. Mishin, Acta Mater. 57 (2009) 5531-5542, doi: 10.1016/j.actamat.2009.07.048.
DOI URL |
[41] |
D. Yao, W. Zhao, H. Zhao, F. Qiu, Q. Jiang, Scr. Mater. 61 (2009) 1153-1155, doi: 10.1016/j.scriptamat.2009.09.007.
DOI URL |
[42] |
A. Smith, H. Luo, D.N. Hanlon, J. Sietsma, S. van der Zwaag, ISIJ Int. 44 (2004) 1188-1194. 10.2355/isijinternational.44.1188.
DOI URL |
[43] |
L. Wu, Y. Li, X. Li, N. Ma, H. Wang, J. Mater. Sci. Technol. 46 (2020) 44-49, doi: 10.1016/j.jmst.2019.11.032.
DOI URL |
[44] |
H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater. Sci. Technol. 34 (2018) 248-256, doi: 10.1016/j.jmst.2017.07.022.
DOI URL |
[1] | Lei Jiang, Changsheng Wang, Huadong Fu, Jie Shen, Zhihao Zhang, Jianxin Xie. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-oriented design strategy [J]. J. Mater. Sci. Technol., 2022, 98(0): 33-43. |
[2] | Zhen Ma, Huarui Zhang, Hanwei Fu, Yanzhao Yang, Jianji Wang, Ming Du, Hu Zhang. Insights into the rheological modeling of semi-solid metals: Theoretical and simulation study [J]. J. Mater. Sci. Technol., 2022, 100(0): 182-192. |
[3] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[4] | Hongliang Su, Liang Huang, Jianjun Li, Wang Xiao, Hui Zhu, Fei Feng, Hongwei Li, Siliang Yan. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings [J]. J. Mater. Sci. Technol., 2021, 70(0): 125-135. |
[5] | P.L. Niu, W.Y. Li, D.L. Chen. Tensile and cyclic deformation response of friction-stir-welded dissimilar aluminum alloy joints: Strain localization effect [J]. J. Mater. Sci. Technol., 2021, 73(0): 91-100. |
[6] | A.G. Mochugovskiy, N. Yu. Tabachkova, M. Esmaeili Ghayoumabadi, V.V. Cheverikin, A.V. Mikhaylovskaya. Joint effect of quasicrystalline icosahedral and L12-strucutred phases precipitation on the grain structure and mechanical properties of aluminum-based alloys [J]. J. Mater. Sci. Technol., 2021, 87(0): 196-206. |
[7] | Yaoxiang Duan, Han Chen, Zhe Chen, Lei Wang, Mingliang Wang, Jun Liu, Fengguo Zhang, Haowei Wang. The influence of nanosized precipitates on Portevin-Le Chatelier bands and surface roughness in AlMgScZr alloy [J]. J. Mater. Sci. Technol., 2021, 87(0): 74-82. |
[8] | Youfang Cao, Longtao Jiang, Deng Gong, Guoqin Chen, Ziyang Xiu, Yangming Cheng, Xiufang Wang, Gaohui Wu. Quantitative study of dimensional stability mechanism and microstructure evolution during precipitation process of 2024Al alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 85-94. |
[9] | Yunwu Ma, Sizhe Niu, Huihong Liu, Yongbing Li, Ninshu Ma. Microstructural evolution in friction self-piercing riveted aluminum alloy AA7075-T6 joints [J]. J. Mater. Sci. Technol., 2021, 82(0): 80-95. |
[10] | Luyan Yang, Shuangming Li, Kai Fan, Yang Li, Yanhui Chen, Wei Li, Deli Kong, Pengfei Cao, Haibo Long, Ang Li. Twin crystal structured Al-10 wt.% Mg alloy over broad velocity conditions achieved by high thermal gradient directional solidification [J]. J. Mater. Sci. Technol., 2021, 71(0): 152-162. |
[11] | Wenming Jiang, Junwen Zhu, Guangyu Li, Feng Guan, Yang Yu, Zitian Fan. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting [J]. J. Mater. Sci. Technol., 2021, 88(0): 119-131. |
[12] | Qiuju Zheng, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Jie He. Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys [J]. J. Mater. Sci. Technol., 2020, 47(0): 142-151. |
[13] | Ting Wu, Carsten Blawert, Mikhail L.Zheludkevich. Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process [J]. J. Mater. Sci. Technol., 2020, 50(0): 75-85. |
[14] | Xiawei Yang, Wenya Li, Siqi Yu, Yaxin Xu, Kaiwei Hu, Yaobang Zhao. Electrochemical characterization and microstructure of cold sprayed AA5083/Al2O3 composite coatings [J]. J. Mater. Sci. Technol., 2020, 59(0): 117-128. |
[15] | Qiyang Tan, Yingang Liu, Zhiqi Fan, Jingqi Zhang, Yu Yin, Ming-Xing Zhang. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 34-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||