J. Mater. Sci. Technol. ›› 2022, Vol. 104: 194-201.DOI: 10.1016/j.jmst.2021.06.047
• Research Article • Previous Articles Next Articles
Zhuoran Houa,b, Di Yanga,b, Yuntao Xina,b, Haoyu Huanga,b, Xin Hua,b, Yuyang Guoa,b, Siduo Wua,b, Liwen Hua,b,*()
Received:
2021-03-23
Revised:
2021-05-18
Accepted:
2021-06-10
Published:
2022-03-30
Online:
2022-03-30
Contact:
Liwen Hu
About author:
* College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China. E-mail address: lwh0423@cqu.edu.cn (L. Hu).Zhuoran Hou, Di Yang, Yuntao Xin, Haoyu Huang, Xin Hu, Yuyang Guo, Siduo Wu, Liwen Hu. In situ coupled MoO3 with CoP/rGO to construct three-dimensional self-supported catalyst for highly efficient alkaline hydrogen evolution reaction[J]. J. Mater. Sci. Technol., 2022, 104: 194-201.
Fig. 4. (a) Polarization curves of MoO3, rGO, CoP, CG, MCG and 20%Pt/C for HER. (b) The overpotential histogram at 10 mA/cm2 and 100 mA/cm2. (c) Tafel plots. (d) Electrochemical impedance spectroscopy (EIS) after fitting. (e) Double-layer capacitance after calculating. (f) Cyclic stability curve of MCG for 20 h at 10 mA/ cm2.
Catalyst | Current density(mA/cm2) | Overpotential vs. RHE(mV) | Tafel slope (mV/dec) | Electrolyte solution | Refs. |
---|---|---|---|---|---|
MoO3@CoP@rGO | 10 | 83 | 58.5 | 1M KOH | This work |
CoP@rGO | 10 | 170 | 61.7 | 1M KOH | [ |
MoS2/Ni3S2 | 10 | 110 | 83.0 | 1M KOH | [ |
CoP@RGO-CNT | 10 | 160 | 60.0 | 1M KOH | [ |
MoO3/N-NiO | 10 | 62 | 59.0 | 1M KOH | [ |
CoP@RGO | 10 | 210 | 104.8 | 1M KOH | [ |
CoP@RGO-PA | 10 | 195 | 57.0 | 1M KOH | [ |
CoP | 10 | 165 | 58.0 | 1M KOH | [ |
CoP-OMC | 10 | 112 | 56.7 | 1M KOH | [ |
Table 1 Comparison of HER performance of MoO3@CoP@rGO with other reported electrocatalysts.
Catalyst | Current density(mA/cm2) | Overpotential vs. RHE(mV) | Tafel slope (mV/dec) | Electrolyte solution | Refs. |
---|---|---|---|---|---|
MoO3@CoP@rGO | 10 | 83 | 58.5 | 1M KOH | This work |
CoP@rGO | 10 | 170 | 61.7 | 1M KOH | [ |
MoS2/Ni3S2 | 10 | 110 | 83.0 | 1M KOH | [ |
CoP@RGO-CNT | 10 | 160 | 60.0 | 1M KOH | [ |
MoO3/N-NiO | 10 | 62 | 59.0 | 1M KOH | [ |
CoP@RGO | 10 | 210 | 104.8 | 1M KOH | [ |
CoP@RGO-PA | 10 | 195 | 57.0 | 1M KOH | [ |
CoP | 10 | 165 | 58.0 | 1M KOH | [ |
CoP-OMC | 10 | 112 | 56.7 | 1M KOH | [ |
Abbreviated letters | The meaning of abbreviated letters |
---|---|
MCG-3 | Electrodeposition of MoO3 on CoP@rGO for 3 min |
MCG-5 | Electrodeposition of MoO3 on CoP@rGO for 5 min |
MCG-15 | Electrodeposition of MoO3 on CoP@rGO for 15 min |
MCG-30 | Electrodeposition of MoO3 on CoP@rGO for 30 min |
Table 2 The meaning of the letter abbreviations.
Abbreviated letters | The meaning of abbreviated letters |
---|---|
MCG-3 | Electrodeposition of MoO3 on CoP@rGO for 3 min |
MCG-5 | Electrodeposition of MoO3 on CoP@rGO for 5 min |
MCG-15 | Electrodeposition of MoO3 on CoP@rGO for 15 min |
MCG-30 | Electrodeposition of MoO3 on CoP@rGO for 30 min |
Fig. 6. Different electrodeposition times MoO3@CoP@rGO nanoparticles: (a) Polarization curves of MCG-3, MCG-5, MCG-15 and MCG-30. (b) The overpotential histogram (c) Tafel plots. (d) Double-layer capacitance. (e) Electrochemical impedance spectroscopy (EIS) after fitting. (f) Comparison of η100 between MCG in this work and various catalysts recently reported.
Fig. 7. Reaction mechanism for the HER (a)The calculated free energy (ΔGH) for water molecule adsorption on MoO3, rGO, CoP, CG, MC and MCG. (b) The calculated free energy (ΔGads) for water molecule adsorption. (c, d) Front view and side view of the MCG, where the cyan sphere is Mo, the blue sphere is Co, the pink sphere is P, the red sphere is O and the white sphere is H.
[1] |
H. Sun, W. Wang, Z. Yu, Y. Yuan, S. Wang, S. Jiao, Chem. Commun. 51 (2015) 11892-11895.
DOI URL |
[2] |
S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu, S. Jiao, Adv. Energy Mater. 6 (2016) 1600137.
DOI URL |
[3] |
S. Wang, S. Jiao, D. Tian, H.S. Chen, H. Jiao, J. Tu, Y. Liu, D.N. Fang, Adv. Mater. 29 (2017) 1606349.
DOI URL |
[4] |
S. Wang, S. Jiao, J. Wang, H.S. Chen, D. Tian, H. Lei, D.N. Fang, ACS Nano 11 (2017) 469-477.
DOI URL |
[5] |
P. Poizot, F. Dolhem, Energy Environ. Sci. 4 (2011) 2003-2019.
DOI URL |
[6] |
B. Sen, S. Kuzu, E. Demir, T. Onal Okyay, F. Sen, Int. J. Hydrog. Energy 42 (2017) 23299-23306.
DOI URL |
[7] |
B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Int. J. Hydrog. Energy 42 (2017) 23284-23291.
DOI URL |
[8] |
Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Şen, Int. J. Hydrog. Energy 42 (2017) 13061-13069.
DOI URL |
[9] |
S. Eris, Z. Daşdelen, Y. Yıldız, F. Sen, Int. J. Hydrog. Energy 43 (2018) 1337-1343.
DOI URL |
[10] |
B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Int. J. Hydrog. Energy 42 (2017) 23276-23283.
DOI URL |
[11] |
M. Momirlan, T. Veziroglu, Int. J. Hydrog. Energy 30 (2005) 795-802.
DOI URL |
[12] |
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44 (2015) 2060-2086.
DOI PMID |
[13] |
Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. Engl. 54 (2015) 52-65.
DOI URL |
[14] |
Z. Lv, W. Ma, M. Wang, J. Dang, K. Jian, D. Liu, D. Huang, Adv. Funct. Mater. 31 (2021) 2102576.
DOI URL |
[15] |
N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.K. Sham, L.M. Liu, G.A. Botton, X. Sun, Nat. Commun. 7 (2016) 13638.
DOI URL |
[16] |
Y. Luo, D. Huang, M. Li, X. Xiao, W. Shi, M. Wang, J. Su, Y. Shen, Electrochim. Acta 219 (2016) 187-193.
DOI URL |
[17] |
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 28 (2016) 1917-1933.
DOI URL |
[18] |
Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 140 (2018) 2610-2618.
DOI URL |
[19] |
P. Zou, J. Li, Y. Zhang, C. Liang, C. Yang, H.J. Fan, Nano Energy 51 (2018) 349-357.
DOI URL |
[20] |
X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180.
DOI URL |
[21] |
P. Liu, J.A. Rodriguez, J. Am. Chem. Soc. 127 (2005) 14871-14878.
DOI URL |
[22] |
Z. Lv, M. Wang, D. Liu, K. Jian, R. Zhang, J. Dang, Inorg. Chem. 60 (2021) 1604-1611.
DOI URL |
[23] |
M. Wang, W. Ma, Z. Lv, D. Liu, K. Jian, J. Dang, J. Phys. Chem. Lett. 12 (2021) 1581-1587.
DOI URL |
[24] |
M. Wang, K. Jian, Z. Lv, D. Li, G. Fan, R. Zhang, J. Mater. Sci. Technol. 79 (2021) 29-34.
DOI URL |
[25] |
H. Zhao, Z. Hu, J. Liu, Y. Li, M. Wu, G. Van Tendeloo, B.L. Su, Nano Energy 47 (2018) 266-274.
DOI URL |
[26] |
S. Han, Y. Feng, F. Zhang, C. Yang, Z. Yao, W. Zhao, F. Qiu, L. Yang, Y. Yao, X. Zhuang, X. Feng, Adv. Funct. Mater. 25 (2015) 3899-3906.
DOI URL |
[27] |
P. Jiang, Q. Liu, Y. Liang, J. Tian, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. Engl. 53 (2014) 12855-12859.
DOI URL |
[28] |
Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 3 (2015) 1656-1665.
DOI URL |
[29] |
E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Angew. Chem. Int. Ed. Engl. 53 (2014) 5427-5430.
DOI URL |
[30] |
J. Tian, Q. Liu, A.M. Asiri, X. Sun, J. Am. Chem. Soc. 136 (2014) 7587-7590.
DOI URL |
[31] |
P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J. Wang, K.H. Lim, X. Wang, Energy Environ. Sci. 7 (2014) 2624-2629.
DOI URL |
[32] |
L. Wen, Y. Sun, C. Zhang, J. Yu, X. Li, X. Lyu, W. Cai, Y. Li, ACS Appl. Energy Mater. 1 (2018) 3835-3842.
DOI URL |
[33] |
Y. Zou, B. Xiao, J.W. Shi, H. Hao, D. Ma, Y. Lv, G. Sun, J. Li, Y. Cheng, Electrochim. Acta 348 (2020) 136339.
DOI URL |
[34] |
X. Fan, X. Wang, W. Yuan, C.M. Li, Sustain. Energy Fuels 1 (2017) 2172-2180.
DOI URL |
[35] |
Y. Liu, X. Cao, R. Kong, G. Du, A.M. Asiri, Q. Lu, X. Sun, J. Mater. Chem. B 5 (2017) 1901-1904.
DOI URL |
[36] |
H. Yang, Y. Zhang, F. Hu, Q. Wang, Nano Lett. 15 (2015) 7616-7620.
DOI URL |
[37] | Y. Zeng, Y. Wang, G. Huang, C. Chen, L. Huang, R. Chen, S. Wang, Chem. Com-mun. 54 (2018) 1465-1468 (Camb.). |
[38] |
C.C. Hou, S. Cao, W.F. Fu, Y. Chen, ACS Appl. Mater. Interfaces 7 (2015) 28412-28419.
DOI URL |
[39] |
Y. Pan, Y. Lin, Y. Chen, Y. Liu, C. Liu, J. Mater. Chem. A 4 (2016) 4745-4754.
DOI URL |
[40] |
J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Angew. Chem. Int. Ed. Engl. 55 (2016) 6702-6707.
DOI URL |
[41] |
T. Wang, Y. Jiang, Y. Zhou, Y. Du, C. Wang, Appl. Surf. Sci. 442 (2018) 1-11.
DOI URL |
[42] |
D. Lee, Y. Kim, H.W. Kim, M. Choi, N. Park, H. Chang, Y. Kwon, J.H. Park, H.J. Kim, J. Catal. 381 (2020) 1-13.
DOI URL |
[43] | X. Li, Y. Wang, J. Wang, Y. Da, J. Zhang, L. Li, C. Zhong, Y. Deng, X. Han, W. Hu, Adv. Mater. 32 (2020) e2003414. |
[44] | L. Ma, X. Shen, H. Zhou, G. Zhu, Z. Ji, K. Chen, J. Mater. Chem. 3 (2015) 5337-5343. |
[45] |
M. Wang, R. Ding, X. Cui, L. Qin, J. Wang, G. Wu, L. Wang, B. Lv, Electrochim. Acta 284 (2018) 534-541.
DOI URL |
[46] |
Z. Feng, H. Zhang, B. Gao, P. Lu, D. Li, P. Xing, Int. J. Hydrog. Energy 45 (2020) 19335-19343.
DOI URL |
[47] |
H. Wu, P. Liu, M. Yin, Z. Hou, L. Hu, J. Dang, J. Alloy Compd. 835 (2020) 155364.
DOI URL |
[48] |
M. Guo, Y. Qu, F. Zeng, C. Yuan, Electrochim. Acta 292 (2018) 88-97.
DOI URL |
[49] |
X. Yang, A.Y. Lu, Y. Zhu, M.N. Hedhili, S. Min, K.W. Huang, Y. Han, L.J. Li, Nano Energy 15 (2015) 634-641.
DOI URL |
[50] |
D. Merki, S. Fierro, H. Vrubel, X. Hu, Chem. Sci. 2 (2011) 1262-1267.
DOI URL |
[51] |
X. Ma, Q. Ruan, J. Wu, Y. Zuo, X. Pu, H. Lin, X. Yi, Y. Li, L. Wang, Dalton Trans. 49 (2020) 6259-6269.
DOI URL |
[52] |
C. Ouyang, X. Wang, S. Wang, Chem. Commun. 51 (2015) 14160-14163 (Camb.).
DOI URL |
[53] |
Z. Huang, Z. Chen, Z. Chen, C. Lv, M.G. Humphrey, C. Zhang, Nano Energy 9 (2014) 373-382.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||