J. Mater. Sci. Technol. ›› 2022, Vol. 104: 183-193.DOI: 10.1016/j.jmst.2021.05.071
• Research Article • Previous Articles Next Articles
Zhaoxin Dua, Qiwei Hea, Ruirun Chenb,*(), Fei Liua, Jingyong Zhangc, Fei Yangd,*(
), Xueping Zhaoa, Xiaoming Cuia, Jun Chenge
Received:
2021-03-30
Revised:
2021-05-13
Accepted:
2021-05-19
Published:
2022-03-30
Online:
2021-08-26
Contact:
Ruirun Chen,Fei Yang
About author:
fei.yang@waikato.ac.nz (F. Yang).Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy[J]. J. Mater. Sci. Technol., 2022, 104: 183-193.
Mo | Al | Nb | Si | O | Fe | H | N | C | Ti |
---|---|---|---|---|---|---|---|---|---|
14.9 | 3.06 | 2.74 | 0.21 | 0.005 | 0.02 | 0.0017 | 0.091 | 0.009 | Bal. |
Table 1 Chemical composition of TB8 alloy (wt%).
Mo | Al | Nb | Si | O | Fe | H | N | C | Ti |
---|---|---|---|---|---|---|---|---|---|
14.9 | 3.06 | 2.74 | 0.21 | 0.005 | 0.02 | 0.0017 | 0.091 | 0.009 | Bal. |
Fig. 2. Microstructure analysis of samples with reductions of 10%-50%: (a)-(e) OM images; (f)-(j) Inverse pole figures (IPF); (k)-(o) Image quality maps (IQ map, — kink band, — twin); (p)-(t) Misorientation angle maps, the pink line represents the “point to origin” misorientation, which gives the orientation difference in reference to the origin. The blue lines reveal the “point to point” misorientation, which is the orientation difference between neighboring points (in the direction of the AB arrow).
Fig. 3. (a)-(b) Higher multiple selected area EBSD IPF maps of cold rolled sheets with 20% and 30% reductions; (c)-(f) Misorientation maps with 20% reduction, in the direction of white arrows AB, CD, EF and GH, respectively; (g) and (h) Misorientation maps under 30% reduction, in the direction of black arrows AB and CD; (i) and (j) Projection relationship of twins, kink bands and matrix with 20% and 30% reduction on the {332} pole figure, and the crystal cell model after rotation. (Among, the spots of different colors represent the distribution of twins, kinks and matrix transmission on the {332} pole figure. Such as, in figure (i), the red spots represent matrix, blue spots represent TP1, green spots represent TP2 and yellow spots represent kink band etc. In figure (j), the blue spots represent matrix, green spots represent kink band and red spots represent {332}TV1 etc.).
Fig. 4. Higher multiple selected area EBSD map of cold rolled sheet with 40% reduction. (a) IPF maps; (b) and (c) Projections of primary kink band, secondary kink band and kink band on (110) pole figure and corresponding crystal orientation change; (d)-(f) Projections of selection D1-D3 on (110) pole figure and crystal orientation change; (g) and (h) Misorientations along the arrow direction of A1A2 and B1B2 white dotted lines; (i)-(m) Misorientations of selection D1-D3 (in the direction of C1C2-G1G2).
Fig. 6. TEM images of the reduction 30%: (a) Bright-field image; (b) Bark-field image; (d) HRTEM images of the reduction 30%; (e)-(i) Atomic arrangement and inverse Fourier transform image of E1-E5 selection.
Fig. 7. TEM images of the reduction 60%: (a) Bright field image of martensite; (b) Dark field image and selected area selected diffraction spots of martensite.
Microstructure type | Matrix | Primary kink band | Secondary kink bands | Primary deformation twins | Secondary deformation twins | α″ |
---|---|---|---|---|---|---|
Width | 1-2 mm | 20-50 µm | 10-16 µm | 800-1600 nm | 50-100 nm | 2-10 nm |
Table 2 Measured widths of different microstructure types.
Microstructure type | Matrix | Primary kink band | Secondary kink bands | Primary deformation twins | Secondary deformation twins | α″ |
---|---|---|---|---|---|---|
Width | 1-2 mm | 20-50 µm | 10-16 µm | 800-1600 nm | 50-100 nm | 2-10 nm |
[1] |
J.Y. Zhang, J.S. Li, Z. Chen, Q.K. Meng, F. Sun, B.L. Shen, J. Alloys Compd. 699 (2014) 775-782.
DOI URL |
[2] |
J.H. Gao, Y.H. Huang, D. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth, Acta Mater 152 (2018) 301-314.
DOI URL |
[3] |
F. Sun, J.Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laille, P. Castany, C. Curfa, P.J. Jacques, F. Prima, Acta Mater 61 (2013) 6406-6417.
DOI URL |
[4] |
H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta Mater 54 (2006) 2419-2429.
DOI URL |
[5] |
K. Cho, R. Morioka, S. Harjo, T. Kawasaki, H.Y. Yasuda, Scr. Mater. 177 (2020) 106-111.
DOI URL |
[6] |
Y. Yang, S.Q. Wu, G.P. Li, Y.F. Lu, K. Yang, P. Ge, Acta Mater 58 (2010) 2778-2787.
DOI URL |
[7] |
X.K. Ma, Z. Chen, D.L. Zhong, S.N. Luo, L. Xiao, W.J Lu, S.L. Zhang, J. Mater. Sci. Technol. 75 (2021) 27-38.
DOI URL |
[8] |
M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, E.V. Pereloma, Acta Mater 104 (2016) 190-200.
DOI URL |
[9] |
T.W. Duerig, J. Albrecht, D. Richter, P. Fischer, Acta Metall 30 (1982) 2161-2172.
DOI URL |
[10] |
T.S. Kuan, R.R. Ahrens, S.L. Sass, Metall. Trans. A 6 (1975) 1767-1774.
DOI URL |
[11] |
J. Li, X.H. Min, K. Yao, Y. Fei, Acta Mater 164 (2019) 322-333.
DOI URL |
[12] |
J.Y. Zhang, J.S. Li, Z. Chen, Q.K. Meng, F. Sun, B.L. Shen, J. Alloys Compd. 699 (2014) 775-782.
DOI URL |
[13] |
H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, S. Miyazaki, Acta Mater 54 (2006) 2419-2429.
DOI URL |
[14] |
M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, J. Pascal, J.F. Prima, Scr. Mater. 66 (2012) 749-752.
DOI URL |
[15] |
X.H. Min, K. Tsuzaki, S. Emura, T. Sawaguchi, S. Ii, K. Tsuchiya, Mater. Sci. Eng. A 579 (2013) 164-169.
DOI URL |
[16] |
S. Sadeghpour, S.M. Abbasi, M. Morakabati, A. Kisko, Scr. Mater. 145 (2018) 104-108.
DOI URL |
[17] |
E. Bertrand, P. Castany, I. Peron, T. Gloriant, Scr. Mater. 64 (2011) 1110-1113.
DOI URL |
[18] |
X.Y. Zhou, X.H. Min, S. Emura, K. Tsuchiya, Mater. Sci. Eng. A 684 (2017) 456-465.
DOI URL |
[19] |
C.B. Lan, Y. Wu, L.L. Guo, H.J. Chen, F. Chen, J. Mater. Sci. Technol. 34 (2018) 788-792.
DOI URL |
[20] |
F. Sun, J.Y. Zhang, M. Marteleur, C. Brozek, E.F. Rauch, M. Veron, P. Vermant, P.J. Jacques, F. Prima, Scr. Mater. 94 (2015) 17-20.
DOI URL |
[21] |
T. Yao, K. Du, H. Wang, Z. Huang, C. Li, L. Li, Y. Hao, R. Yang, H. Ye, Acta Mater 133 (2017) 21-29.
DOI URL |
[22] |
D. Liu, D.X. Liu, J.F. Cui, X.C. Xu, K. Fan, A. Ma, Y.Y. He, S. Bagherifard, J. Mater. Sci. Technol. 84 (2021) 105-115.
DOI URL |
[23] | S. Allain, J.P. Chateau, O. Bouaziz, Mater. Sci. Eng.A 387-389 (2004) 143-147. |
[24] |
G. Dini, R. Ueji, A. Najafizadeh, S.M. Moni-Vaghefi, Mater. Sci. Eng. A 527 (2010) 2759-2763.
DOI URL |
[25] |
S. Sadeghpour, S.M. Abbasi, M. Morakabati, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A 731 (2018) 465-478.
DOI URL |
[26] |
Y. Yang, D. Xu, S. Cao, S.Q. Wu, Z.W. Zhu, H. Wang, L. Li, S.W. Xin, L. Qu, A.J. Huang, J. Mater. Sci. Technol. 72 (2021) 52-60.
DOI URL |
[27] |
S. Sander, D. Raabe, Mater. Sci. Eng. A 479 (2008) 236-247.
DOI URL |
[28] |
L. Wang, J. Sabisch, E.T. Lilleodden, Scr. Mater. 111 (2016) 68-71.
DOI URL |
[29] |
S. Sadeghpour, S.M. Abbasi, M. Morakbati, L.P. Karjalainen, J. Alloys Compd. 808 (2019) 151741.
DOI URL |
[30] | Z.N. Liao, B.F. Luan, X.Y. Zhang, R.P. Liu, K.L. Murty, Q. Liu, J. Alloys Compd. (2019) 152642. |
[31] |
H.H. Liu, M. Niinomi, M. Nakai, J. Hieda, K. Cho, J. Mech. Behav. Biomed. 30 (2014) 205-213.
DOI URL |
[32] |
S. Ozan, Y.C. Li, J.X. Lin, Y.W. Zhang, H.W. Jiang, Mater. Sci. Eng. A 719 (2018) 112-123.
DOI URL |
[33] |
X.Y. Zhou, X.H. Min, J. Mater. Sci. 53 (2018) 8604-8618.
DOI URL |
[34] |
M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E.V. Pereloma, Acta Mater 84 (2015) 124-135.
DOI URL |
[35] |
M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, E.V. Pereloma, Acta Mater 104 (2016) 190-200.
DOI URL |
[36] |
Wu Z.H, H.C. Kou, N.N. Chen, M.Q. Zhang, K. Hua, J.K. Fan, B. Tang, J.S. Li, J. Mater. Sci. Technol. 50 (2020) 204-214.
DOI URL |
[37] |
Y.P. Zheng, W.D. Zeng, Y.B. Wang, Mater. Sci. Eng. A 702 (2017) 218-224.
DOI URL |
[38] |
T. Sakai, H. Miura, X. Yang, Mater. Sci. Eng. A 499 (2009) 2-6.
DOI URL |
[39] |
S.K. Kar, S. Suman, S. Shivaprasad, A. Chaudhui, A. Bhattacharjee, Mater. Sci. Eng. A 610 (2014) 171-180.
DOI URL |
[40] | P.J. Shi, Y.B. Zhang, Y. Li, W.L. Ren, T.X. Zheng, Z. Shen, J.C. Peng, B. Yang, P.F. Hu, Y. Zhang, P.K. Liaw, Y.T. Zhu, Mater. Today 41 (2020) 61-70. |
[41] |
W.G. Zhu, C.S. Tan, R.Y. Xiao, Q.Y. Sun, J. Sun, J. Mater. Sci. Technol. 57 (2020) 188-196.
DOI URL |
[42] |
Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang, J. Mater. Sci. Technol. 34 (2018) 2507-2514.
DOI |
[43] | R.L. Fullman, Trans. AIME 197 (1953) 447-452. |
[44] |
Z.X. Zhang, J.K. Fan, B. Tang, H.C. Kou, J. Wang, X. Wang, S.Y. Wang, Q.J. Wang, Z.Y. Che, J.S. Li, J. Mater. Sci. Technol. 49 (2020) 56-69.
DOI URL |
[1] | Hanchen Feng, Lei Cai, Linfeng Wang, Xiaodan Zhang, Feng Fang. Microstructure and strength in ultrastrong cold-drawn medium carbon steel [J]. J. Mater. Sci. Technol., 2022, 97(0): 89-100. |
[2] | Shiyu Wu, Dongxu Qiao, Haitao Zhang, Junwei Miao, Hongliang Zhao, Jun Wang, Yiping Lu, Tongmin Wang, Tingju Li. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures [J]. J. Mater. Sci. Technol., 2022, 97(0): 229-238. |
[3] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[4] | Ruifeng Dong, Xiaoyang Zhang, Chenhui Li, Yuhong Zhao, Jinzhong Tian, Li Wu, Hua Hou. Correlation between the mechanical properties and the 〈110〉 texture in a hot-rolled near β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 165-168. |
[5] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[6] | Hongfeng Dong, Baozhong Li, BoBo Liu, Yang Zhang, Lei Sun, Kun Luo, Yingju Wu, Mengdong Ma, Bing Liu, Wentao Hu, Julong He, Dongli Yu, Bo Xu, Zhisheng Zhao, Yongjun Tian. Extraordinary high-temperature mechanical properties in binder-free nanopolycrystalline WC ceramic [J]. J. Mater. Sci. Technol., 2022, 97(0): 169-175. |
[7] | Young-Kyun Kim, Kee-Ahn Lee. Effect of carrier gas species on the microstructure and compressive deformation behaviors of ultra-strong pure copper manufactured by cold spray additive manufacturing [J]. J. Mater. Sci. Technol., 2022, 97(0): 264-271. |
[8] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[9] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[10] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[11] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[12] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[13] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[14] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
[15] | Jinshuo Zhang, Guohua Wu, Liang Zhang, Xiaolong Zhang, Chunchang Shi, Xin Tong. Addressing the strength-ductility trade-off in a cast Al-Li-Cu alloy—Synergistic effect of Sc-alloying and optimized artificial ageing scheme [J]. J. Mater. Sci. Technol., 2022, 96(0): 212-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||