J. Mater. Sci. Technol. ›› 2022, Vol. 102: 8-15.DOI: 10.1016/j.jmst.2021.06.036
• Research Article • Previous Articles Next Articles
Yadong Liua, Cheng Tangb, Weiwei Sunc, Guanjia Zhua, Aijun Dub, Haijiao Zhanga,*(
)
Received:2021-05-16
Revised:2021-06-06
Accepted:2021-06-09
Published:2022-03-10
Online:2021-08-27
Contact:
Haijiao Zhang
About author:*E-mail address: hjzhang128@shu.edu.cn (H. Zhang).Yadong Liu, Cheng Tang, Weiwei Sun, Guanjia Zhu, Aijun Du, Haijiao Zhang. In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries[J]. J. Mater. Sci. Technol., 2022, 102: 8-15.
Fig. 1. (a,b) SEM images, (c,d) TEM images, (e,f) HRTEM images, (g,h) STEM image and the corresponding EDS elemental mapping of Mo, S, C, and N elements, and (i) EDX profile of C-MoS2/NCNTs.
Fig. 2. (a) XRD patterns, (b) Nitrogen adsorption-desorption isotherms, (c) Corresponding pore size curves, and (d) Raman spectra of C-MoS2/NCNTs, MoS2@NCNTs and MoS2/NCNTs. (e) XPS survey scanning spectrum of C-MoS2/NCNTs, and High-resolution XPS spectra of (f) Mo 3d, (g) S 2p, (h) C 1s, and (i) N 1s.
Fig. 3. (a) CV curves of C-MoS2/NCNTs from the first scan to the third scan at a scan rate of 0.1 mV s-1. (b) Cycle performances at 200 mA g-1, (c) at 1000 mA g-1, (d) Rate capabilities, and (e) Capacity retention of C-MoS2/NCNTs, MoS2@NCNTs and MoS2/NCNTs electrodes. (f) Comparison of cycling performances between C-MoS2/NCNTs and previously reported MoS2-based hybrid electrodes for SIBs.
Fig. 4. (a) EIS spectra, and (b) electronic conductivities of C-MoS2/NCNTs, MoS2@NCNTs and MoS2/NCNTs. (c) CV curves of C-MoS2/NCNTs electrode at various scan rates, (d) The relationship between logarithmic peak current and logarithmic scanning rate, and (e) pseudocapacitance contribution at different scanning rates. (f) The calculated Na+ diffusion coefficients of C-MoS2/NCNTs, MoS2@NCNTs and MoS2/NCNTs.
Fig. 5. (a) The geometries for the expanded bilayer MoS2 with and without Na+ intercalation and charge density difference with the isovalue of 0.001 e/Å3 for Na intercalated MoS2. The yellow and blue areas represent the electron accumulation and depletion, respectively. (b) The barrier energy for Na+ diffusion in bilayer MoS2.
| [1] | C.H. Wu, H. Song, C. Tang, A.J. Du, C.Z. Yu, Z.D. Huang, M.H. Wu, H.J. Zhang, Chem. Eng. J. 378 (2019) 122249. |
| [2] |
C.F. Zhang, Z.Y. Wang, Z.P. Guo, X.W. (David) Lou, ACS Appl. Mater. Interfaces 4 (2012) 3765-3768.
DOI URL |
| [3] |
Y. Wang, B. Ren, J. Zhen Ou, K. Xu, C. Yang, Y. Li, H. Zhang, Sci. Bull. 66 (2021) 1228-1252.
DOI URL |
| [4] |
L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O.G. Schmidt, Adv. Mater. 25 (2013) 1180-1184.
DOI URL |
| [5] |
X. Hu, Y. Li, G. Zeng, J.C. Jia, H.B. Zhan, Z.H. Wen, ACS Nano 12 (2018) 1592-1602.
DOI URL |
| [6] | W.N. Ren, W.W. Zhou, H.F. Zhang, C.W. Cheng, ACS Appl. Mater. Interfaces 9 (2017) 4 87-4 95. |
| [7] | Y.C. Jiao, A. Mukhopadhyay, Y. Ma, L. Yang, A.M. Hafez, H.L. Zhu, Adv. Energy Mater. 8 (2018) 1702779. |
| [8] |
Q.C. Pan, Q.B. Zhang, F.H. Zheng, Y.Z. Liu, Y.P. Li, X. Ou, X.H. Xiong, C.H. Yang, M. Liu, ACS Nano 12 (2018) 12578-12586.
DOI URL |
| [9] |
S.S. Xia, Y.R. Wang, Y. Liu, C.H. Wu, M.H. Wu, H.J. Zhang, Chem. Eng. J. 332 (2018) 431-439.
DOI URL |
| [10] |
H.S. Hou, C.E. Banks, M.J. Jing, Y. Zhang, X.B. Ji, Adv. Mater. 27 (2015) 7861-7866.
DOI URL |
| [11] | H.Y. Geng, Y. Peng, L.T. Qu, H.J. Zhang, M.H. Wu, Adv. Energy Mater. 10 (2020) 1903030. |
| [12] | C.L. Liu, Y. Bai, Y. Zhao, H. Yao, H. Pang, Energy Storage Mater. 33 (2020) 470-502. |
| [13] |
X.H. Cao, Y.M. Shi, W.H. Shi, X.H. Rui, Q.Y. Yan, J. Kong, H. Zhang, Small 9 (2013) 3433-3438.
DOI URL |
| [14] |
G.J. Sim, Z.X. Huang, Y. Wang, D.Z. Kong, S.Z. Huang, B. Liu, H.Y. Yang, FlatChem 9 (2018) 8-14.
DOI URL |
| [15] |
Y.Q. Teng, H.L. Zhao, Z.J. Zhang, Z.L. Li, Q. Xia, Y. Zhang, L.N. Zhao, X.F. Du, Z.H. Du, P.P. Lv, K. Świerczek, ACS Nano 10 (2016) 8526-8535.
DOI URL |
| [16] |
Z.X. Xu, D. Lu, L. Ma, C.B. Lu, X. Xi, G.F. Zhang, R.L. Liu, D.Q. Wu, Chem. Eng. J. 364 (2019) 201-207.
DOI URL |
| [17] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI PMID |
| [18] |
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
DOI URL |
| [19] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
| [20] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
| [21] | S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104. |
| [22] | D. Sheppard, P. Xiao, W. Chemelewski, D.D. Johnson, G. Henkelman, J. Chem. Phys. 136 (2012) 074103. |
| [23] | C.H. Wu, J.Z. Ou, F.Y. He, J.F. Ding, W. Luo, M.H. Wu, H.J. Zhang, Nano Energy 65 (2019) 104061. |
| [24] | W.W. Hong, Y. Zhang, L. Yang, Y. Tian, P. Ge, J.G. Hu, W.F. Wei, G.Q. Zou, H.S. Hou, X.B. Ji, Nano Energy 65 (2019) 104038. |
| [25] | N. Savjani, E.A. Lewis, M.A. Bissett, J.R. Brent, R.A.W. Dryfe, S.J. Haigh, P. O’Brien, Chem.Mater. 28 (2016) 657-664. |
| [26] | H.L. Zhu, F. Zhang, J.R. Li, Y.B. Tang, Small 14 (2018) 1703951. |
| [27] | X.B. Guan, L.P. Zhao, P. Zhang, J. Liu, X.F. Song, L. Gao, Mater. Today Energy 16 (2020) 100379. |
| [28] | X. Xie, T. Makaryan, M. Zhao, K.L. Van Aken, Y. Gogotsi, G. Wang, Adv. Energy Mater. 6 (2016) 1502161. |
| [29] |
J. Zhang, M.H. Wu, Z.T. Shi, M. Jiang, W.J. Jian, Z. Xiao, J. Li, C.S. Lee, J. Xu, Small 12 (2016) 4379-4385.
DOI URL |
| [30] |
Y. Hou, J.Y. Li, Z.H. Wen, S.M. Cui, C. Yuan, J.H. Chen, Nano Energy 8 (2014) 157-164.
DOI URL |
| [31] |
C. Ma, X. Li, C. Deng, Y.Y. Hu, S. Lee, X.Z. Liao, Y.S. He, Z.F. Ma, H. Xiong, ACS Nano 13 (2019) 671-680.
DOI URL |
| [32] | X. Xu, R.S. Zhao, W. Ai, B. Chen, H.F. Du, L.S. Wu, H. Zhang, W. Huang, T. Yu, Adv. Mater. 30 (2018) 1800658. |
| [33] |
S.P. Zhang, B.V.R. Chowdari, Z.Y. Wen, J. Jin, J.H. Yang, ACS Nano 9 (2015) 12464-12472.
DOI URL |
| [34] |
S.K. Park, J.S. Park, Y.C. Kang, ACS Appl. Mater. Interfaces 10 (2018) 16531-16540.
DOI URL |
| [35] | B. Yu, Y.F. Chen, Z.G. Wang, D.J. Chen, X.Q. Wang, W.L. Zhang, J.R. He, W.D. He, J. Power Sources 447 (2020) 227364. |
| [36] |
Y.P. Liu, X.Y. He, D. Hanlon, A. Harvey, J.N. Coleman, Y.G. Li, ACS Nano 10 (2016) 8821-8828.
DOI URL |
| [37] |
J.F. Ding, C. Tang, G.J. Zhu, F.Y. He, A.J. Du, M.H. Wu, H.J. Zhang, Mater. Chem. Front. 5 (2021) 825-833.
DOI URL |
| [38] |
Y. Wang, Q. Qu, G. Li, T. Gao, F. Qian, J. Shao, W. Liu, Q. Shi, H. Zheng, Small 12 (2016) 6033-6041.
DOI PMID |
| [39] | G. Li, D. Luo, X. Wang, M.H. Seo, S. Hemmati, A. Yu, Z. Chen, Adv. Funct. Mater. 27 (2017) 1702562. |
| [40] | H. Wang, D.M. Xu, G.C. Jia, Z.F. Mao, Y.S. Gong, B.B. He, R. Wang, H.J. Fan, En-ergy Storage Mater. 25 (2020) 114-123. |
| [41] | L. Cao, X.H. Liang, X. Ou, X.F. Yang, Y.Z. Li, C.H. Yang, Z. Lin, M. Liu, Adv. Funct. Mater. 30 (2020) 1910732. |
| [42] | Y.F. Chao, R. Jalili, Y. Ge, C.Y. Wang, T. Zheng, K. Shu, G.G. Wallace, Adv. Funct. Mater. 27 (2017) 1700234. |
| [43] | Z.D. Lei, L.X. Xu, Y.L. Jiao, A.J. Du, Y. Zhang, H.J. Zhang, Small 14 (2018) 1704410. |
| [44] | Z.D. Lei, X.D. Chen, W.W. Sun, Y. Zhang, Y. Wang, Adv. Energy Mater. 9 (2019) 1801010. |
| [45] |
S.P. Ong, V.L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 4 (2011) 36 80-36 88.
DOI URL |
| [1] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
| [2] | Huijun Li, Xiaomin Wang, Zhenxin Zhao, Rajesh Pathak, Siyue Hao, Xiaoming Qiu, Qiquan Qiao. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage [J]. J. Mater. Sci. Technol., 2022, 99(0): 184-192. |
| [3] | Huajing Xiong, Jianan Fu, Jinyao Li, Rashad Ali, Hong Wang, Yifan Liu, Hua Su, Yuanxun Li, Woon-Ming Lau, Nasir Mahmood, Chunhong Mu, Xian Jian. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection [J]. J. Mater. Sci. Technol., 2021, 68(0): 132-139. |
| [4] | Zhi-Jia Zhang, Wei-Jie Li, Shu-Lei Chou, Chao Han, Hua-Kun Liu, Shi-Xue Dou. Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as anode for sodium ion batteries [J]. J. Mater. Sci. Technol., 2021, 68(0): 140-146. |
| [5] | Yameng Yin, Cunyuan Pei, Fangyu Xiong, Yi Pan, Xiaoming Xu, Bo Wen, Qinyou An. Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties [J]. J. Mater. Sci. Technol., 2021, 83(0): 83-89. |
| [6] | Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism [J]. J. Mater. Sci. Technol., 2021, 89(0): 24-35. |
| [7] | Chuan Wang, Hai Long, Lijiao Zhou, Chao Shen, Wei Tang, Xiaodong Wang, Bingbing Tian, Le Shao, Zhanyuan Tian, Haijun Su, Keyu Xie. A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 121-127. |
| [8] | Shao-Fang Li, Zhen-Yi Gu, Jin-Zhi Guo, Xian-Kun Hou, Xu Yang, Bo Zhao, Xing-Long Wu. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 78(0): 176-182. |
| [9] | Shi Tao, Wei Zhou, Dajun Wu, Zhicheng Wang, Bin Qian, Wangsheng Chu, Augusto Marcelli, Li Song. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 230-236. |
| [10] | Jiajia Ye, Xuting Li, Guang Xia, Guanghao Gong, Zhiqiang Zheng, Chuanzhong Chen, Cheng Hu. P-doped CoSe2 nanoparticles embedded in 3D honeycomb-like carbon network for long cycle-life Na-ion batteries [J]. J. Mater. Sci. Technol., 2021, 77(0): 100-107. |
| [11] | Anna Basa, Sławomir Wojtulewski, Beata Kalska-Szostko, Maciej Perkowski, Elena Gonzalo, Olga Chernyayeva, Alois Kuhn, Flaviano García-Alvarado. Carbon coating of air-sensitive insulating transition metal fluorides: An example study on α-Li3FeF6 high-performance cathode for lithium ion batteries [J]. J. Mater. Sci. Technol., 2020, 55(0): 107-115. |
| [12] | Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 44(0): 237-257. |
| [13] | Xiaohui Rong, Fei Gao, Feixiang Ding, Yaxiang Lu, Kai Yang, Hong Li, Xuejie Huang, Liquan Chen, Yong-Sheng Hu. Triple effects of Sn-substitution on Na0.67Ni0.33Mn0.67O2 [J]. J. Mater. Sci. Technol., 2019, 35(7): 1250-1254. |
| [14] | Zhimin Zou, Chunhai Jiang. Nitrogen-doped amorphous carbon coated mesocarbon microbeads as excellent high rate Li storage anode materials [J]. J. Mater. Sci. Technol., 2019, 35(4): 644-650. |
| [15] | Liu Xuelian,Chen Yuxi,Liu Hongbo,Liu Zhi-Quan. SiO2@C hollow sphere anodes for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2017, 33(3): 239-245. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
