J. Mater. Sci. Technol. ›› 2022, Vol. 102: 72-79.DOI: 10.1016/j.jmst.2021.05.074
• Research Article • Previous Articles Next Articles
Xiao-Tong Wanga, Yang Yangb, Jin-Zhi Guoa, Zhen-Yi Gua, Edison Huixiang Angc, Zhong-Hui Sund, Wen-Hao Lia, Hao-Jie Lianga, Xing-Long Wua,b,*()
Received:
2021-03-17
Revised:
2021-04-25
Accepted:
2021-05-13
Published:
2022-03-10
Online:
2021-08-26
Contact:
Xing-Long Wu
About author:
*E-mail address: xinglong@nenu.edu.cn (X.-L. Wu).Xiao-Tong Wang, Yang Yang, Jin-Zhi Guo, Zhen-Yi Gu, Edison Huixiang Ang, Zhong-Hui Sun, Wen-Hao Li, Hao-Jie Liang, Xing-Long Wu. An advanced cathode composite for co-utilization of cations and anions in lithium batteries[J]. J. Mater. Sci. Technol., 2022, 102: 72-79.
Fig. 2. (a) and (b) SEM images of LMFP@C with different magnifications; (c) TEM image of the LMFP/G hybrid compound (the insert on the top right corner is the HRTEM image of graphite at greater magnification and on the left bottom corner is the HRTEM image of LMFP@C at a higher magnification).
Fig. 3. (a) Representative GCD curves at 0.1 C rate and (b) CV curves of LMFP/G compounds with four different mixing ratios at a potential window of 2.5-5.0 V with a scan rate of 0.1 mV/s.
Fig. 5. (a-d) CV profiles of compounds of LMFP@C and graphite with different mixing ratios at various scan rate from 0.1 to 0.7 mV/s; (e-h) Linear fitting results corresponding to CV profiles describing the relationships between ip and v1/2 of the compounds in which LMFP@C and graphite are mixed in different proportions.
Fig. 6. Structural evolutions of the compounds with the mixing ratio of LMFP/graphite=1:3 during Li+/PF6- insertion/extraction process. (a) In situ XRD pattern of the compound collected at a rate of 0.2 C in the 1st cycle, with a sampling interval of 15 min. (b) Corresponding galvanostatic charge/discharge curve for the 1st cycle.
Fig. 7. Schematic illustration of the working mechanism of LMFP/G hybrid battery, in which the extraction/insertion of Li+ occurs in the low-voltage range and the insertion/extraction of PF6- happens in the high-voltage range.
[1] |
C.W. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, J. Am. Chem. Soc. 133 (2011) 2132-2135.
DOI URL |
[2] |
Y.F. Zhao, J.C. Guo, InfoMat 2 (2020) 866-878.
DOI URL |
[3] |
B.H. Hou, Y.Y. Wang, J.Z. Guo, Y. Zhang, Q.L. Ning, Y. Yang, W.H. Li, J.P. Zhang, X.L. Wang, X.L. Wu, ACS Appl. Mater. Interfaces 10 (2018) 3581-3589.
DOI URL |
[4] |
X.K. Hou, W.H. Li, Y.Y. Wang, S.F. Li, Y.F. Meng, H.Y. Yu, B.K. Chen, X.L. Wu, Chin. Chem. Lett. 31 (2020) 2314-2318.
DOI URL |
[5] |
S.S. Zhang, InfoMat 3 (2021) 125-130.
DOI URL |
[6] | B.H. Hou, Y.Y. Wang, Q.L. Ning, W.H. Li, X.T. Xi, X. Yang, H.J. Liang, X. Feng, X.L. Wu, Adv. Mater. 31 (2019) 1903125. |
[7] | B.T. Dou, J. Yan, Q. Chen, X.G. Han, Q.M. Feng, X.M. Miao, P. Wang, Sensor. Actuat. B-Chem. 328 (2021) 129082. |
[8] |
Y.C. Tang, X.J. Li, H.M. Lv, W.L. Wang, C.Y. Zhi, H.F. Li, InfoMat 2 (2020) 1109-1130.
DOI URL |
[9] |
Y.R. Ji, S.T. Weng, X.Y. Li, Q.H. Zhang, L. Gu, Rare Met 39 (2020) 205-217.
DOI URL |
[10] |
S.P. Ong, A. Jain, G. Hautier, B. Kang, G. Ceder, Electrochem. Commun. 12 (2010) 427-430.
DOI URL |
[11] |
J.M. Luo, E. Matios, H. Wang, X.Y. Tao, W.Y. Li, InfoMat 2 (2020) 1057-1076.
DOI URL |
[12] |
H.J. Liang, B.H. Hou, W.H. Li, Q.L. Ning, X. Yang, Z.Y. Gu, X.J. Nie, G. Wang, X.L. Wu, Energy Environ. Sci. 12 (2019) 3575-3584.
DOI URL |
[13] |
C.J. Cui, W.Z. Qian, Y.T. Yu, C.Y. Kong, B. Yu, L. Xiang, F. Wei, J. Am. Chem. Soc. 136 (2014) 2256-2259.
DOI URL |
[14] | H.P. Zhao, L. Liu, R. Vellacheri, Y. Lei, Adv. Sci. 4 (2017) 1700188. |
[15] |
J.N. Hao, F.H. Yang, S.L. Zhang, H.N. He, G.L. Xia, Y.J. Liu, C. Didier, T.C. Liu, W.K. Pang, V.K. Peterson, J. Lu, Z.P. Guo, Proc. Natl. Acad. Sci. U.S.A. 117 (2020) 2815-2823.
DOI URL |
[16] | F.P. McCullough, C.A. Levine, R.V. Snelgrove, (Dow Chemical Co.), US patent, 1989. |
[17] |
H.B. Wang, R.W. Wang, L.J. Liu, S. Jiang, L. Ni, X.F. Bie, X. Yang, J.G. Hu, Z.Q. Wang, H.B. Chen, L.K. Zhu, D.L. Zhang, Y.J. Wei, Z.T. Zhang, S.L. Qiu, F. Pan, Nano Energy 39 (2017) 346-354.
DOI URL |
[18] |
S. Rothermel, P. Meister, G. Schmuelling, O. Fromm, H.W. Meyer, S. Nowak, M. Winter, T. Placke, Energy Environ. Sci. 7 (2014) 3412-3423.
DOI URL |
[19] | W.H. Li, Q.L. Ning, X.T. Xi, B.H. Hou, J.Z. Guo, Y. Yang, B. Chen, X.L. Wu, Adv. Mater. 31 (2019) e1804766. |
[20] |
J.C. Gao, S.F. Tian, Q. Li, M. Yoshio, H.Y. Wang, J. Power Sources 297 (2015) 121-126.
DOI URL |
[21] | P.P. Qin, M. Wang, N. Li, H.L. Zhu, X. Ding, Y.B. Tang, Adv. Mater. 29 (2017) 1606805. |
[22] |
H. Guo, C.Y. Wu, J. Xie, S.C. Zhang, G.S. Cao, X.B. Zhao, J. Mater. Chem. A 2 (2014) 10581-10588.
DOI URL |
[23] |
X.N. Fu, K. Chang, L. Bao, H.W. Tang, E. Shangguan, Z.R. Chang, Electrochim. Acta 225 (2017) 272-282.
DOI URL |
[24] | H.X. Li, M. Xu, C.H. Gao, W. Zhang, Z.A. Zhang, Y.Q. Lai, L.F. Jiao, Energy Storage Mater. 26 (2020) 325-333. |
[25] |
W.J. Ren, K. Wang, J.L. Yang, R. Tan, J.T. Hu, H. Guo, Y.D. Duan, J.X. Zheng, Y. Lin, F. Pan, J. Power Sources 331 (2016) 232-239.
DOI URL |
[26] |
D. Ding, Y. Maeyoshi, M. Kubota, J. Wakasugi, K. Kanamura, H. Abe, ACS Appl. Energy Mater. 2 (2019) 1727-1733.
DOI URL |
[27] | J.T. Hu, J. Yi, S.H. Cui, Y.D. Duan, T.C. Liu, G. Hua, L.P. Lin, L. Yuan, J.X. Zheng, K. Amine, F. Pan, Adv. Energy Mater. 6 (2016) 1600856. |
[28] | T. Placke, G. Schmuelling, R. Kloepsch, P. Meister, O. Fromm, P. Hilbig, H.W. Meyer, M. Winter, Z. Anorg, Allg. Chem. 640 (2015) 1996-2006. |
[29] |
H. Guo, C.Y. Wu, L.H. Liao, J. Xie, S.C. Zhang, P.Y. Zhu, G.S. Cao, X.B. Zhao, Inorg. Chem. 54 (2015) 667-674.
DOI URL |
[30] |
L.X. Yuan, Z.H. Wang, W.X. Zhang, X.L. Hu, J.T. Chen, Y.H. Huang, J.B. Goode-nough, Energy Environ. Sci. 4 (2011) 269-284.
DOI URL |
[31] |
L.H. Liao, H.T. Wang, H. Guo, P.Y. Zhu, J. Xie, C.H. Jin, S.C. Zhang, G.S. Cao, T.J. Zhu, X.B. Zhao, J. Mater. Chem. A 3 (2015) 19368-19375.
DOI URL |
[32] |
Z.Y. Gu, J.Z. Guo, Z.H. Sun, X.X. Zhao, W.H. Li, X. Yang, H.J. Liang, C.D. Zhao, X.L. Wu, Sci. Bull. 65 (2020) 702-710.
DOI URL |
[33] | J.Z. Guo, P.F. Wang, X.L. Wu, X.H. Zhang, Q. Yan, H. Chen, J.P. Zhang, Y.G. Guo, Adv. Mater. 29 (2017) 1701968. |
[34] | J.Z. Guo, Y. Yang, D.S. Liu, X.L. Wu, B.H. Hou, W.L. Pang, K.C. Huang, J.P. Zhang, Z.M. Su, Adv. Energy Mater. 8 (2018) 1702504. |
[35] | H. Liu, F.C. Strobridge, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman, P.J. Chu-pas, C.P. Grey, Science 344 (2014) 1252817. |
[36] | H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim, B.W. Cho, Elec-trochim. Acta 53 (2008) 7946-7951. |
[1] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[2] | Achmad Yanuar Maulana, Jungwook Song, Da Won Lee, Chae Eun Lee, Jongsik Kim. Enhanced electrochemical performance of graphitic carbon-wrapped spherical FeOF nanoparticles using maleopimaric acid as a cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 85(0): 184-193. |
[3] | Artem P.Tarutin, Yulia G.Lyagaeva, Aleksey I.Vylkov, Maxim Yu.Gorshkov, Gennady K.Vdovin, Dmitry A.Medvedev. Performance of Pr2(Ni,Cu)O4+δ electrodes in protonic ceramic electrochemical cells with unseparated and separated gas spaces [J]. J. Mater. Sci. Technol., 2021, 93(0): 157-168. |
[4] | Chunmao Huang, Shenghong Liu, Yang Wang, Jingjie Feng, Yanming Zhao. A new active NaVMoO6 cathode material for rechargeable Li ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 97-102. |
[5] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[6] | Wenjuan Wang, Yan Zhao, Yongguang Zhang, Ning Liu, Zhumabay Bakenov. Nickel embedded porous macrocellular carbon derived from popcorn as sulfur host for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 69-77. |
[7] | Weimian Guan, Jie Yuan, Hao Lv, Tao Zhu, Youtong Fang, Jiabin Liu, Hongtao Wang, Zhihui Li, Zhigong Tang, Wei Yang. Homogeneous arc ablation behaviors of CuCr cathodes improved by chromic oxide [J]. J. Mater. Sci. Technol., 2021, 81(0): 1-12. |
[8] | Ning Zhang, Ying Li, Yifan Qiao. Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping [J]. J. Mater. Sci. Technol., 2021, 89(0): 167-178. |
[9] | Di Wu, Wen Ren, Yanna NuLi, Jun Yang, Jiulin Wang. Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review [J]. J. Mater. Sci. Technol., 2021, 91(0): 168-177. |
[10] | Hong Sun, Nan Deng, Jianqiang Li, Gang He, Jiangtao Li. Highly thermal-conductive graphite flake/Cu composites prepared by sintering intermittently electroplated core-shell powders [J]. J. Mater. Sci. Technol., 2021, 61(0): 93-99. |
[11] | Shao-Fang Li, Zhen-Yi Gu, Jin-Zhi Guo, Xian-Kun Hou, Xu Yang, Bo Zhao, Xing-Long Wu. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 78(0): 176-182. |
[12] | Hemdan S.H. Mohamed, Mohamed Rabia, Xian-Gang Zhou, Xu-Sen Qin, Gomaa Khabiri, Mohamed Shaban, Hussein A. Younus, S. Taha, Zhi-Yi Hu, Jing Liu, Yu Li, Bao-Lian Su. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation [J]. J. Mater. Sci. Technol., 2021, 83(0): 179-187. |
[13] | Ji Won Kim, Kwangeun Jung, Taeeun Yim. Dually-functionalized Ni-rich layered oxides for high-capacity lithium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 86(0): 70-76. |
[14] | Ning Liu, Heng Ma, Lu Wang, Yan Zhao, Zhumabay Bakenov, Xin Wang. Dealloying-derived nanoporous deficient titanium oxide as high-performance bifunctional sulfur host-catalysis material in lithium-sulfur battery [J]. J. Mater. Sci. Technol., 2021, 84(0): 124-132. |
[15] | Huan Du, Shihao Feng, Wen Luo, Liang Zhou, Liqiang Mai. Advanced Li-SexSy battery system: Electrodes and electrolytes [J]. J. Mater. Sci. Technol., 2020, 55(0): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||