J. Mater. Sci. Technol. ›› 2022, Vol. 102: 66-71.DOI: 10.1016/j.jmst.2021.06.028
• Research Article • Previous Articles Next Articles
Yikun Zhang*(), Jian Zhu, Shuo Li, Jiang Wang Zhongming Ren*(
)
Received:
2021-04-24
Revised:
2021-06-09
Accepted:
2021-06-21
Published:
2022-03-10
Online:
2021-08-26
Contact:
Yikun Zhang,Jiang Wang Zhongming Ren
About author:
zmren@shu.edu.cn (Z. Ren).Yikun Zhang, Jian Zhu, Shuo Li, Jiang Wang Zhongming Ren. Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy[J]. J. Mater. Sci. Technol., 2022, 102: 66-71.
Fig. 1. (a) The room temperature XRD pattern for Er20Ho20Gd20Ni20Co20 HE amorphous ribbons at room temperature. (b) The DSC trace for Er20Ho20Gd20Ni20Co20 HE amorphous ribbons.
Fig. 3. (a) The HRTEM image for Er20Ho20Gd20Ni20Co20 HE-amorphous ribbons. (b) The SAED pattern for Er20Ho20Gd20Ni20Co20 HE-amorphous ribbons. (c)-(f) The EDS mapping results of five consistent elementals for Er20Ho20Gd20Ni20Co20 HE-amorphous ribbons, respectively.
Fig. 4. (a) (Left-hand scale) FC and ZFC magnetization M versus T with H = 0.2 T and of FC M versus T with H of 1 T for Er20Ho20Gd20Ni20Co20 HE amorphous ribbons; (right-hand scale) dMFC/dT versus T with H of 0.2 and 1 T for Er20Ho20Gd20Ni20Co20 HE amorphous ribbons. (b) M(T) curves with H of 2-7 T for Er20Ho20Gd20Ni20Co20 HE amorphous ribbons.
Fig. 5. (a) The M(H) curves for Er20Ho20Gd20Ni20Co20 HE amorphous ribbons. (b) The transferred Arrott plot curves (M2 versus H/M) of Er20Ho20Gd20Ni20Co20 HE amorphous ribbons.
Fig. 8. The comparison of RC for the present Er20Ho20Gd20Ni20Co20 HE-amorphous ribbons and some RE based amorphous materials as well as several famous MR materials, including Gd55Ni25Al20 [47], Gd50Co20Al30 [22], Gd55Co20Al25 [48], Gd55Co30Al15 [49], Gd33Er22Co15Al20 [24], Gd46Ni32Al22 [50], Gd55Al24Co20Zr3 [24], Gd55Al18Ni25Sn2 [44], Gd60Co26Al14 [48], Gd40Ni45Al15 [50], Gd39Dy17Co20Al24 [51], Ho36Dy20Co20Al24 [52], Er50Y6Co20Al24 [53], Gd36Y20Co20Al24 [54], Dy50Gd7Co20Al23 [55], Gd [43], Gd5Si2Ge1.9Fe0.1 [56], and Gd5Si2Ge2 [44].
[1] |
B. Shen, J. Sun, F. Hu, H. Zhang, Z. Cheng, Adv. Mater. 21 (2009) 4545-4564.
DOI URL |
[2] |
E.Deafay Moya, V. Heinea, N. Mathur, Nat. Phys. 11 (2015) 202-205.
DOI URL |
[3] |
V. Franco, J. Blázqueza, J. Iplus, J. Law, L. Ramíreze, A. Comde, Prog. Mater. Sci. 93 (2018) 112-232.
DOI URL |
[4] |
N. Terada, H. Mamiya, Nat. Comm. 12 (2021) 1212-1217.
DOI URL |
[5] |
C. Yuan, F. Yang, X. Xia, C. Shi, D. Moritz, M. Li, B. Sheng, X. Wang, A. Meyer, W. Wang, Mater. Today 32 (2020) 26-34.
DOI URL |
[6] | Z. Hou, L. Li, C. Liu, X. Gao, Z. Ma, Y. Peng, M. Yan, X. Zhang, J. Liu, Mater. Today Phys 17 (2021) 100341. |
[7] |
L. Hu, L. Cao, L. Li, J. Duan, X. Liao, F. Long, J. Zhou, Y. Xiao, Y. Zeng, S. Zhou, Mater. Horiz. 8 (2021) 1286-1296.
DOI URL |
[8] |
L.M. Ramírez, C.R. Muñiz, J.Y. Law, V. Franco, K. Skokov, O. Gutfleisch, Acta Mater 175 (2019) 406-414.
DOI URL |
[9] |
L.W. Li, Ye Yuan, Y. Qi, Q. Wang, S. Zhou, Mater. Res. Lett. 6 (2018) 67-71.
DOI URL |
[10] |
L. Li, P. Xu, S.K. Ye, Y. Li, D. Liu, D. Huo, M. Yan, Acta Mater 194 (2020) 354-365.
DOI URL |
[11] | L.W. Li, M. Yan, J. Alloys Compd. 823 (2020) 153810. |
[12] |
Y.K. Zhang, J. Alloys Compd. 787 (2019) 1173-1186.
DOI URL |
[13] |
T. Gottschall, A. Gràcia-Condal, M. Fries, A. Taubel, L. Pfeuffer, L. Mañosa, A. i Planes, K.P. Skokov, O. Gutfleisch, Nat. Mater. 17 (2018)929-934.
DOI PMID |
[14] |
J. Bai, D. Liu, J. Gu, X. Jiang, X. Liang, Z. Guan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 74 (2021) 46-51.
DOI URL |
[15] |
X. Liang, J. Bai, Z. Guan, J. Gu, H. Yan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 83 (2021) 90-101.
DOI URL |
[16] |
Z. Ma, X. Dong, Z. Zhang, L. Li, J. Mater. Sci. Technol. 92 (2021) 138-142.
DOI URL |
[17] | L.W. Li, O. Nihaus, M. Kerstting, R. Pötgen, Appl. Phys. Lett. 104 (2014) 092416. |
[18] |
B. Wu, Y. Zhang, D. Guo, J. Wang, Z. Ren, Ceram. Int. 47 (2021) 6290-6296.
DOI URL |
[19] |
W. Wang, Adv. Mater. 21 (2009) 4524.
DOI URL |
[20] |
L. Li, C. Xu, Y. Yuan, S. Zhou, Mater. Res. Lett. 6 (2018) 413-418.
DOI URL |
[21] | Y. Zhang, B. Wu, D. Guo, J. Wang, Z. Ren, Chin. Phys. B 30 (2021) 153801. |
[22] |
P. Jia, L. Duan, K. Wang, E. Wang, J. Mater. Sci. Technol. 35 (2019) 2283-2287.
DOI URL |
[23] | Y.K. Zhang, D. Guo, B. Wu, H. Wang, R. Guan, Z. Ren, J. Appl. Phys. 127 (2020) 033905. |
[24] | Q. Luo, D. Zhao, M. Pang, W. Wang, Appl. Phys. Lett. 89 (2006) 081914. |
[25] |
J. Yeah, S. Cheng, S. Lin, J. Gan, T. Ching, T. Shun, C.H. Tseau, S. Chan, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[26] |
M. Feuerbacher, M. Heidelman, C. Thomaas, Mater. Res. Lett. 1 (2015) 1-4.
DOI URL |
[27] | B.S. Murty, J.W. Yeh, S. Ranganathan, Butterworth-Heine-mann, 2014. |
[28] |
Y. Fu, J. Li, H. Luo, C. Du, X. Li, J. Mater. Sci. Technol. 80 (2021) 217-233.
DOI URL |
[29] |
E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4 (2019) 515-534.
DOI |
[30] |
D.J.M. King, S.C. Middleburgh, A.G. McGregor, M.B. Cortie, Acta Mater 104 (2016) 172-179.
DOI URL |
[31] |
Y. Zhang, T. Tang, M. Gan, K. Dahmeen, P. Liaw, Z. Luo, Prog. Mater. Sci. 61 (2014) 1-42.
DOI URL |
[32] | A. Quintana-Nedelcos, Z. Leong, N.A. Morley, Mater. Today Energy 20 (2021) 100621. |
[33] | J.Y. Law, Á. Díaz-García, L.M. Moreno-Ramírez, V. Franco, Acta Mater 212 (2021) 116931. |
[34] | J.Y. Law, L.M. Moreno-Ramírez, Á. Díaz-García, A. Martín-Cid, S. Kobayashi, S. Kawaguchi, T. Nakamura, V. Franco, J. Alloys Compd. 855 (2021) 157424. |
[35] | H. Yin, J.Y. Law, Y. Huang, V. Franco, H. Shen, S. Jiang, Y. Bao, J. Sun, Mater. Des. 206 (2021) 109824. |
[36] | S.F. Lu, L. Ma, J. Wang, Y.S. Du, L. Li, J.T. Zhao, G.H. Rao, J. Alloys Compd. 874 (2021) 159918. |
[37] |
Z. Dong, S. Huang, V. Ström, G. Chai, L.K. Varga, O. Eriksson, L. Vitos, J. Mater. Sci. Technol. 79 (2021) 15-20.
DOI URL |
[38] |
D. Marel, G. Sawatzkay, Phys. Rev. B 37 (1988) 10674-10684.
PMID |
[39] |
R. Jullien, B. Coqblin, Phys. Rev. B 8 (1973) 5263-5271.
DOI URL |
[40] |
C. Yuan, F. Yang, X. Xia, C. Shi, D. Moritz, M. Li, B. Sheng, X. Wang, A. Meyer, W. Wang, Mater. Today 32 (2020) 26-34.
DOI URL |
[41] |
A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817-2829.
DOI URL |
[42] | B.K. Banerjee, Phys. Lett. 12 (1964) 16-17. |
[43] |
K.A. Gschneidner Jr, V.K. Pecharsky, A.O. Tsoko, Rep. Prog. Phys. 68 (2005) 1479-1539.
DOI URL |
[44] |
V. Pecharsky, K. GschneidnerJr, Phys. Rev. Lett. 78 (1997) 4 494-4 497.
DOI URL |
[45] | A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi, Phys. Rev. B 67 (2003) 104416. |
[46] | L.D. Griffith, Y. Mudryk, J. Slaughter, V.K. Pecharsky, J. Appl. Phys. 123 (2018) 034902. |
[47] | J. Du, Q. Zhen, Y. Zhang, D. Li, Z. Zhang, J. Appl. Phys. 103 (2008) 023918. |
[48] |
H. Fu, X. Zhang, H. Yun, B. Teng, X. Zhu, Solid State Comm. 145 (2008) 15-17.
DOI URL |
[49] | F. Yuan, J. Du, B. Shen, Appl. Phys. Lett. 101 (2012) 032405. |
[50] |
J. Chang, X. Hui, Z. Xu, Z.P. Lu, G. Cheng, Intermetallic 18 (2010) 1132-1136.
DOI URL |
[51] |
D. Ding, M. Tan, L. Xian, J. Alloys Compd. 581 (2013) 828-831.
DOI URL |
[52] |
Z. Xu, X. Huo, E. Wang, J. Chan, G. Cheng, J. Alloys Compd. 504 (2010) 146-149.
DOI URL |
[53] | C.M. Pang, L. Chen, H. Xu, W. Guo, Z.W. Lv, J. Huo, M. Cai, B.L. Shen, X.L. Wang, C.C. Yuan, J. Alloys Compd. 827 (2020) 154101. |
[54] |
L. Liang, X. Hu, Y. Wu, G. Chen, J. Alloys Compd. 457 (2008) 541-544.
DOI URL |
[55] | Q. Luo, D. Zhao, M. Pang, W.H. Wang, Appl. Phys. Lett. 90 (2007) 211903. |
[56] |
V. Provenzsno, A. Shapiroo, R. Shul, Nature 429 (2004) 853-857.
DOI URL |
[1] | Xing Tong, Yan Zhang, Yaocen Wang, Xiaoyu Liang, Kai Zhang, Fan Zhang, Yuanfei Cai, Haibo Ke, Gang Wang, Jun Shen, Akihiro Makino, Weihua Wang. Structural origin of magnetic softening in a Fe-based amorphous alloy upon annealing [J]. J. Mater. Sci. Technol., 2022, 96(0): 233-240. |
[2] | Renquan Wang, Tingchuan Zhou, Zhiyong Zhong. Low-temperature processing of LiZn-based ferrite ceramics by co-doping of V2O5 and Sb2O3: Composition, microstructure and magnetic properties [J]. J. Mater. Sci. Technol., 2022, 99(0): 1-8. |
[3] | Zhipan Ma, Xiaoshi Dong, Zhenqian Zhang, Lingwei Li. Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds [J]. J. Mater. Sci. Technol., 2021, 92(0): 138-142. |
[4] | Xuefeng Liao, Jiasheng Zhang, Jiayi He, Wenbing Fan, Hongya Yu, Xichun Zhong, Zhongwu Liu. Development of cost-effective nanocrystalline multi-component (Ce,La,Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd [J]. J. Mater. Sci. Technol., 2021, 76(0): 215-221. |
[5] | Shuo Li, Longfei Ma, Jinkui Fan, Jianping Yang, Qiang Zheng, Baoru Bian, Jian Zhang, Juan Du. High energy product of isotropic bulk Sm-Co/α-Fe(Co) nanocomposite magnet with multiple hard phases and nanoscale grains [J]. J. Mater. Sci. Technol., 2021, 88(0): 183-188. |
[6] | E. Burzo, P. Vlaic, D.P. Kozlenko, N.O. Golosova, S.E. Kichanov, B.N. Savenko, A. Ostlin, L. Chioncel. Structure and magnetic properties of YCo5 compound at high pressures [J]. J. Mater. Sci. Technol., 2020, 42(0): 106-112. |
[7] | Jinlong Wang, Jing Bai, Jianglong Gu, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study [J]. J. Mater. Sci. Technol., 2020, 58(0): 100-106. |
[8] | Qingzheng Jiang, Jie Song, Qingfang Huang, Sajjad Ur Rehman, Lunke He, Qingwen Zeng, Zhenchen Zhong. Enhanced magnetic properties and improved corrosion performance of nanocrystalline Pr-Nd-Y-Fe-B spark plasma sintered magnets [J]. J. Mater. Sci. Technol., 2020, 58(0): 138-144. |
[9] | Long Hou, Xingdu Fan, Qianqian Wang, Weiming Yang, Baolong Shen. Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2019, 35(8): 1655-1661. |
[10] | Lei Zhang, Weijun Ren, Xiaohua Luo, Zhidong Zhang. Magnetic and magnetotransport properties of single-crystalline R2PdGe6 (R = Pr, Gd and Tb) [J]. J. Mater. Sci. Technol., 2019, 35(5): 764-768. |
[11] | Zheng Chen, Xiao Sun, Zongling Ding, Yongqing Ma. Manganese ferrite nanoparticles with different concentrations: Preparation and magnetism [J]. J. Mater. Sci. Technol., 2018, 34(5): 842-847. |
[12] | Yang Hu, Runjian Jiang, Jingbao Zhang, Chengsong Zhang, Guodong Cui. Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles [J]. J. Mater. Sci. Technol., 2018, 34(5): 886-890. |
[13] | Haitao Jiao, Yunbo Xu, Wenzheng Qiu, Haijie Xu, R.D.K. Misra, Yifeng Du, Jianping Li, Guodong Wang. Significant effect of as-cast microstructure on texture evolution and magnetic properties of strip cast non-oriented silicon steel [J]. J. Mater. Sci. Technol., 2018, 34(12): 2472-2479. |
[14] | Feng J.N.,Liu W.,Gong W.J.,Zhao X.G.,Kim D.,Choi C.J.,Zhang Z.D.. Magnetic Properties and Coercivity of MnGa Films Deposited on Different Substrates [J]. J. Mater. Sci. Technol., 2017, 33(3): 291-294. |
[15] | Xu Yunbo, Jiao Haitao, Zhang Yuanxiang, FengFang, Lu Xiang, Wang Yang, Cao Guangming, Li Chenggang, Misra R.D.K.. Effect of pre-annealing prior to cold rolling on the precipitation, microstructure and magnetic properties of strip-cast non-oriented electrical steels [J]. J. Mater. Sci. Technol., 2017, 33(12): 1465-1474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||