J. Mater. Sci. Technol. ›› 2022, Vol. 102: 137-158.DOI: 10.1016/j.jmst.2021.06.022
• Research Article • Previous Articles Next Articles
Xinghong Zhang, Baihe Du, Ping Hu*(), Yuan Cheng*(
), Jiecai Han
Received:
2021-04-09
Revised:
2021-06-07
Accepted:
2021-06-08
Published:
2022-03-10
Online:
2021-08-26
Contact:
Ping Hu,Yuan Cheng
About author:
cy6810@hit.edu.cn (Y. Cheng).Xinghong Zhang, Baihe Du, Ping Hu, Yuan Cheng, Jiecai Han. Thermal response, oxidation and ablation of ultra-high temperature ceramics, C/SiC, C/C, graphite and graphite-ceramics[J]. J. Mater. Sci. Technol., 2022, 102: 137-158.
Condition | Heat flux (MW/m2) | Enthalpy (MJ/kg) | Pressure (kPa) | Ablation time (s) |
---|---|---|---|---|
1 | 8.39 | 31.4 | 5.5 | 90 |
2 | 7.75 | 29.8 | 5.2 | 100-600 |
3 | 7.05 | 27.7 | 5.0 | 200-1000 |
4 | 5.84 | 24.2 | 4.5 | 200-2500 |
5 | 4.5 | 22.9 | 3 | 200-1000 |
Table 1 Test parameters.
Condition | Heat flux (MW/m2) | Enthalpy (MJ/kg) | Pressure (kPa) | Ablation time (s) |
---|---|---|---|---|
1 | 8.39 | 31.4 | 5.5 | 90 |
2 | 7.75 | 29.8 | 5.2 | 100-600 |
3 | 7.05 | 27.7 | 5.0 | 200-1000 |
4 | 5.84 | 24.2 | 4.5 | 200-2500 |
5 | 4.5 | 22.9 | 3 | 200-1000 |
Materials | Conditions | Ablation time (s) | Mass change (g) | Thickness of surface recession (mm) | Maximum surface temperature (°C) |
---|---|---|---|---|---|
Z | 1 | 90 | 2.0955 | 3.72 | 2859 |
2 | 600 | -0.0987 | — | 2433 | |
3 | 600 | -0.0699 | — | 2420 | |
4 | 1000 | -0.1456 | — | 2386 | |
ZS | 1 | 90 | 0.877 | 1.79 | 2895 |
2 | 600 | 0.61 | 0.65 | 2397 | |
3 | 1000 | -0.0175 | — | 2325 | |
4 | 1000 | -0.0184 | 0 | 1522 | |
4 | 2500 | -0.0376 | — | 2256 | |
4* | 1000 | -0.0074 | -0.06 | 1720 | |
ZSG | 1 | 90 | 2.3895 | 3.28 | 2932 |
2 | 600 | 1.3521 | 1.90 | 2429 | |
3 | 1000 | 0.0261 | — | 2388 | |
4 | 1000 | -0.0154 | -0.09 | 2215 | |
CS | 2 | 200 | 5.4973 | 10.87 | 2517 |
3 | 200 | 4.5449 | 9.01 | 2406 | |
4 | 200 | 2.3332 | 4.58 | 2321 | |
5 | 200 | 0.2088 | 0 | 1580 | |
5 | 900 | 5.3713 | 11.81 | 2198 | |
5* | 1000 | 0.1704 | 0.3 | 1617 | |
CC | 1 | 90 | 1.7790 | 2.67 | 2437 |
2 | 200 | 3.1969 | 5.24 | 2323 | |
3 | 200 | 2.9921 | 4.93 | 2246 | |
G | 1 | 90 | 1.8706 | 3.13 | 2435 |
2 | 200 | 3.4452 | 6.30 | 2317 | |
4 | 200 | 2.9681 | 5.32 | 2137 | |
GS | 2 | 100 | — | — | 2486 |
4 | 200 | — | — | 2134 | |
GSZ | 2 | 200 | 3.5069 | 6.95 | 2816 |
4 | 200 | 0.0426 | 0.06 | 1641 | |
4* | 1000 | 0.4581 | 1.52 | 2386 |
Table 2 Ablation results of thermal protection materials.
Materials | Conditions | Ablation time (s) | Mass change (g) | Thickness of surface recession (mm) | Maximum surface temperature (°C) |
---|---|---|---|---|---|
Z | 1 | 90 | 2.0955 | 3.72 | 2859 |
2 | 600 | -0.0987 | — | 2433 | |
3 | 600 | -0.0699 | — | 2420 | |
4 | 1000 | -0.1456 | — | 2386 | |
ZS | 1 | 90 | 0.877 | 1.79 | 2895 |
2 | 600 | 0.61 | 0.65 | 2397 | |
3 | 1000 | -0.0175 | — | 2325 | |
4 | 1000 | -0.0184 | 0 | 1522 | |
4 | 2500 | -0.0376 | — | 2256 | |
4* | 1000 | -0.0074 | -0.06 | 1720 | |
ZSG | 1 | 90 | 2.3895 | 3.28 | 2932 |
2 | 600 | 1.3521 | 1.90 | 2429 | |
3 | 1000 | 0.0261 | — | 2388 | |
4 | 1000 | -0.0154 | -0.09 | 2215 | |
CS | 2 | 200 | 5.4973 | 10.87 | 2517 |
3 | 200 | 4.5449 | 9.01 | 2406 | |
4 | 200 | 2.3332 | 4.58 | 2321 | |
5 | 200 | 0.2088 | 0 | 1580 | |
5 | 900 | 5.3713 | 11.81 | 2198 | |
5* | 1000 | 0.1704 | 0.3 | 1617 | |
CC | 1 | 90 | 1.7790 | 2.67 | 2437 |
2 | 200 | 3.1969 | 5.24 | 2323 | |
3 | 200 | 2.9921 | 4.93 | 2246 | |
G | 1 | 90 | 1.8706 | 3.13 | 2435 |
2 | 200 | 3.4452 | 6.30 | 2317 | |
4 | 200 | 2.9681 | 5.32 | 2137 | |
GS | 2 | 100 | — | — | 2486 |
4 | 200 | — | — | 2134 | |
GSZ | 2 | 200 | 3.5069 | 6.95 | 2816 |
4 | 200 | 0.0426 | 0.06 | 1641 | |
4* | 1000 | 0.4581 | 1.52 | 2386 |
Fig. 5. Photographs of thermal protection materials after 90 s ablation under condition 1: (a) Z, (b) ZS, (c) ZSG, (d) CC, (e) G, and (f) ZSG during testing
Fig. 7. Surface and side images of thermal protection materials after ablation under condition 3: (a, f) Z, (b, g) ZS, (c, h) ZSG, (d, i) CS, (e, j) CC.
Fig. 8. Photographs of thermal protection materials after ablation under condition 4: (a) Z, (b) ZS, (c) ZSG, (d) CS, (e) CC, (f) GS, (g) GSZ (200s), (h) GSZ (200+1000s), (i and j) enlarged photographs of GSZ after 200 s ablation.
Fig. 11. (a) Photograph of the test model during testing, (b) a schematic of the steady-state energy balance at the surface, and (c) photograph of comparison between C/C and graphite under condition 2.
Materials | Conditions | Maximum surface temperature (°C) | Radiative out energy (MW/m2) |
---|---|---|---|
Z | 1 | 2859 | 3.82 |
2 | 2433 | 2.13 | |
3 | 2420 | 2.09 | |
4 | 2255 | 1.62 | |
ZS | 1 | 2895 | 4.00 |
2 | 2397 | 2.02 | |
3 | 2325 | 1.81 | |
4 | 2256 | 1.62 | |
CS | 2 | 2517 | 3.09 |
3 | 2406 | 2.63 | |
4 | 2321 | 2.31 | |
CC | 1 | 2437 | 2.75 |
2 | 2323 | 2.32 | |
3 | 2246 | 2.05 | |
G | 4 | 2137 | 1.72 |
GSZ | 2 | 2816 | 3.61 |
4 | 2386 | 1.98 |
Table 3 Radiative out the energy of thermal protection materials.
Materials | Conditions | Maximum surface temperature (°C) | Radiative out energy (MW/m2) |
---|---|---|---|
Z | 1 | 2859 | 3.82 |
2 | 2433 | 2.13 | |
3 | 2420 | 2.09 | |
4 | 2255 | 1.62 | |
ZS | 1 | 2895 | 4.00 |
2 | 2397 | 2.02 | |
3 | 2325 | 1.81 | |
4 | 2256 | 1.62 | |
CS | 2 | 2517 | 3.09 |
3 | 2406 | 2.63 | |
4 | 2321 | 2.31 | |
CC | 1 | 2437 | 2.75 |
2 | 2323 | 2.32 | |
3 | 2246 | 2.05 | |
G | 4 | 2137 | 1.72 |
GSZ | 2 | 2816 | 3.61 |
4 | 2386 | 1.98 |
Fig. 12. Temperature curves and temperature difference of C/C and G at different regions under condition 2: (a) Temperature curves (b) temperature difference.
Fig. 13. (a) Temperature curves of C/SiC and C/C under different conditions, (b) temperature curves of C/SiC and C/C at the beginning of the heating under different conditions.
Materials | Conditions | Temperature jump (°C) | The change of radiative out energy before and after temperature jump (MW/m2) | The percentage of the energy change in total heat flux |
---|---|---|---|---|
ZS | 1 | 1105 | 3.18 | 37.9% |
2 | 677 | 1.30 | 16.7% | |
3 | 654 | 1.16 | 16.5% | |
4 | 574 | 0.96 | 16.4% | |
CS | 2 | 828 | 2.42 | 31.2% |
3 | 683 | 1.91 | 27.1% | |
4 | 660 | 1.68 | 28.8% | |
GSZ | 2 | 1196 | 3.61 | 39.1% |
4 | 631 | 1.21 | 20.7% |
Table 4 Variations of the surface temperature and radiative energy before and after temperature jump.
Materials | Conditions | Temperature jump (°C) | The change of radiative out energy before and after temperature jump (MW/m2) | The percentage of the energy change in total heat flux |
---|---|---|---|---|
ZS | 1 | 1105 | 3.18 | 37.9% |
2 | 677 | 1.30 | 16.7% | |
3 | 654 | 1.16 | 16.5% | |
4 | 574 | 0.96 | 16.4% | |
CS | 2 | 828 | 2.42 | 31.2% |
3 | 683 | 1.91 | 27.1% | |
4 | 660 | 1.68 | 28.8% | |
GSZ | 2 | 1196 | 3.61 | 39.1% |
4 | 631 | 1.21 | 20.7% |
Fig. 18. Photographs of ZrB2 (a) during testing and (b) cooling process under condition 1, and (c, d) Photographs of ZS after deep filtration the testing under condition 3.
Fig. 19. Photographs of ZS after testing under condition 2: (a) integral structure, (b) outside scale was removed, (c) outside scale, (d) reversed outside scale.
Fig. 20. (a-c) SEM images of ZS after testing under condition 2 and (d-g) SEM micrographs of the inner surface for ZS after testing under condition 2 (outside scale was removed).
Fig. 25. SEM micrographs of graphite and C/C after oxidation and ablation under condition 1: (a) G, (b) low magnification of CC, (c) high magnification of CC.
Fig. 26. Photographs of thermal protection materials after test under conditions 1 and 2: (a) CC (Condition 1), (b) G (Condition 1), (c) CC (Condition 2), (d) G (Condition 2). The green solid line represents the initial surface contour. The areas between the green solid line and color contours are the materials ablated after tests under conditions 1 and 2.
Fig. 29. (a) SEM micrographs of GSZ in the center, and (b) edge regions after test under condition 2 where the outside oxide scale was flaked off during the cooling process.
[1] | E. Fitzer, Springer (1998) 281-309. |
[2] |
J.C. Han, X.D. He, S.Y. Du, Carbon 33 (1995) 473-478.
DOI URL |
[3] |
L.F. Cheng, Y.D. Xu, L.T. Zhang, R. Gao, Carbon 39 (2001) 1127-1133.
DOI URL |
[4] |
Z.S. Rak, J. Am. Ceram. Soc. 84 (2001) 2235-2239.
DOI URL |
[5] |
Y.D. Xu, L.T. Zhang, L.F. Cheng, D.T. Yan, Carbon 36 (1998) 1051-1056.
DOI URL |
[6] |
R.J He, Z.L. Qu, D. Liang, J. Adv. Ceram. 6 (2017) 279-287.
DOI URL |
[7] |
Y. Xiang, W. Li, S. Wang, Z.H. Chen, Ceram. Int. 38 (2012) 9-13.
DOI URL |
[8] |
S.Q. Guo, J. Eur. Ceram. Soc. 29 (2009) 995-1011.
DOI URL |
[9] |
W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, J. Am. Ceram. Soc. 90 (2007) 1347-1364.
DOI URL |
[10] | E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, I. Talmy, Electrochem. Soc. Interface 16 (2007) 30. |
[11] |
M.M. Opeka, I.G. Talmy, J.A. Zaykoski, J. Mater. Sci. 39 (2004) 5887-5904.
DOI URL |
[12] |
S.R. Levine, E.J. Opila, M.C. Halbig, J.D. Kiser, M. Singh, J.A. Salem, J. Eur. Ceram. Soc. 22 (2002) 2757-2767.
DOI URL |
[13] |
F. Li, X. Huang, J.X. Liu, G.J. Zhang, J. Adv. Ceram. 9 (2020) 1-16.
DOI URL |
[14] |
E. Eakins, D.D. Jayaseelan, W.E. Lee, Metall. Mater. Trans. A 42 (2011) 878-887.
DOI URL |
[15] | P. Kolodziej, J. Salute, D.L. Keese, NASA TM-112215, 1997. |
[16] | J. Reuther, D. Kinney, S. Smith, D. Kontinos, P. Gage, D. Saunders, CA: AIAA J, 2001. |
[17] |
Y. Xiang, W. Li, S. Wang, B.F. Zhang, Z.H. Chen, Compos. Part B 45 (2013) 1391-1396.
DOI URL |
[18] |
S.F. Tang, J.Y. Deng, W.C. Liu, K. Yang, Carbon 44 (2006) 2877-2882.
DOI URL |
[19] |
S.F. Tang, J.Y. Deng, S. Wang, W.C. Liu, K. Yang, Mater. Sci. Eng. A 465 (2007) 1-7.
DOI URL |
[20] |
G. Wen, S.H. Sui, L. Song, X.Y. Wang, L. Xia, Corros. Sci 52 (2010) 3018-3022.
DOI URL |
[21] |
X. Xiong, Y.L. Wang, G.D. Li, Z.K. Chen, W. Sun, Z.S. Wang, Corros. Sci. 77 (2013) 25-30.
DOI URL |
[22] |
C.Y. Li, K.Z. Li, H.J. Li, H.B. Ouyang, Y.L. Zhang, L.J. Guo, Corros. Sci. 75 (2013) 169-175.
DOI URL |
[23] |
H.J. Li, D.J. Yao, Q.G. Fu, L. Liu, Y.L. Zhang, X.Y. Yao, et al., Carbon 52 (2013) 418-426.
DOI URL |
[24] |
F.Y. Yang, X.H. Zhang, J.C. Han, S.Y. Du, Mater. Lett. 62 (2008) 2925-2927.
DOI URL |
[25] |
S.Q. Guo, K. Naito, Y. Kagawa, Ceram. Int. 39 (2013) 1567-1574.
DOI URL |
[26] |
Z. Wang, C.Q. Hong, X.H. Zhang, X. Sun, J.C. Han, Mater. Chem. Phys. 113 (2009) 338-341.
DOI URL |
[27] |
L.Y. Duan, L. Luo, L.P. Liu, Y.G. Wang, J. Adv. Ceram. 9 (2020) 393-402.
DOI URL |
[28] |
G. Herdrich, M. Fertig, S. Löhle, S. Pidan, M. Auweter-Kurtz, Z. Laux, J. Spacecr. Rocket. 42 (2005) 817-824.
DOI URL |
[29] |
F. Panerai, B. Helber, O. Chazot, M. Balat-Pichelin, Carbon 71 (2014) 102-119.
DOI URL |
[30] | J. Marschall, D.A. Pejakovic, W.G. Fahrenholtz, G.E. Hilmas, F. Panerai, O. Chazot, J. Therm. Heat Trans. 26 (2012) 559-572. |
[31] |
P. Hu, K.X. Gui, Y. Yang, S. Dong, X.H. Zhang, Materials 6 (2013) 1730-1744.
DOI URL |
[32] | P. Brix, G. Herzberg, J. Chem. Phys. 12 (1953) 2240. |
[33] |
M Brook, J Kaplan, Phys. Rev. 96 (1954) 1540.
DOI URL |
[34] | J.V. Rakich, D.A. Stewart, M.J. Lanfranco, AIAA J. 81 (1982) 0944. |
[35] |
C.D. Scott, J. Spacecr. Rocket. 22 (1985) 4 89-4 99.
DOI URL |
[36] |
J. Marschall, A. Chamberlain, D. Crunkleton, B. Rogers, J. Spacecr. Rocket. 41 (2004) 576-581.
DOI URL |
[37] | D.A. Stewart, J.V. Rakich, M.J. Lanfranco, Part 1983. 2:827-845. |
[38] | D.A. Stewart, J.V. Rakich, Y.K. Chen, Virginia. 1993. |
[39] |
L. Scatteia, R. Borrelli, G. Cosentino, E. Beche, J.L. Sans, J. Spacecr. Rocket. 43(20 06) 10 04-1012.
DOI URL |
[40] |
T.H. Squire, J Marschall, J. Eur. Ceram. Soc. 30 (2010) 2239-2251.
DOI URL |
[41] | H.A. Bethe, MC Adams, J.Aerosp. Sci. 26 (1959) 321-328. |
[42] | B. Laub, E. Venkatapathy, Portugal. 2003. |
[43] |
G. Pulci, J. Tirillo, F. Marra, F. Fossati, C. Bartuli, T. Valente, Compos. Part A. 41 (2010) 1483-1490.
DOI URL |
[44] | M.W. Chase, J Phys Chem Ref Dat Mon, 1998. |
[45] |
M. Balat-Pichelin, JM Badie, R Berjoan, P Boubert, Chem. Phys. 291 (2003) 181-194.
DOI URL |
[46] |
Y.C. Kim, M. Boudart, Langmuir 7 (1991) 2999-3005.
DOI URL |
[47] |
F.S. Milos, Y.K. Chen, J. Spacecr. Rocket. 50 (2013) 137-149.
DOI URL |
[48] |
M. Balat-Pichelin, M. Passarelli, A. Vesel, Mater. Chem. Phys. 123 (2010) 40-46.
DOI URL |
[49] | A. Francese, Universitàdegli Studi di Napoli Federico II, 2007. |
[50] | D.A. Stewart, NASA Technical Memorandum 110383, 1996. |
[51] |
L. Bedra, M.J.H. Balat-Pichelin, Aerosp. Sci. Technol. 9 (2005) 318-328.
DOI URL |
[52] | R.P. Nathan, S. Bindu, in: Proceedings of the AIAA Thermophysics Conference, Toronto, Ontario, Canada, 2005. |
[53] | W.L. Wang, I.D. Boyd, Am Ins Aeronat-ual & Astr, 2003. |
[54] |
G.W. Sutton, J. Spacecr. Rocket. 19 (1982) 3-11.
DOI URL |
[55] |
P. Hu, G.L. Wang, Z. Wang, Corros. Sci. 51 (2009) 2724-2732.
DOI URL |
[56] |
R. Ruh, H.J. Garrett, R.F. Domagala, V.A. Patel, J. Am. Ceram. Soc. 60 (1977) 399-403.
DOI URL |
[57] |
C.M. Carney, J. Mater. Sci. 44 (2009) 5673-5681.
DOI URL |
[58] |
J.C. Han, P. Hu, X.H. Zhang, S.H. Meng, W.B. Han, Compos. Sci. Technol. 68 (3) (2008) 799-806.
DOI URL |
[59] |
J.C. Han, P. Hu, X.H. Zhang, S.H. Meng, Scr. Mater. 57 (2007) 825-828.
DOI URL |
[60] |
W.B. Han, P. Hu, X.H. Zhang, J.C. Han, S.H. Meng, J. Am. Ceram. Soc. 91 (2008) 3328-3334.
DOI URL |
[61] |
F. Monteverde, R. Savino, J. Eur. Ceram. Soc. 27 (2007) 4797-4805.
DOI URL |
[62] |
T.A. Parthasarathy, R.A. Rapp, M. Opeka, R.J. Kerans, Acta Mater. 55 (2007) 5999-6010.
DOI URL |
[63] |
K.Z. Li, X.T. Shen, H.J. Li, S.Y. Zhang, T. Feng, L.L. Zhang, Carbon 49 (2011) 1208-1215.
DOI URL |
[64] |
X.T. Shen, K.Z. Li, H.J. Li, H.Y. Du, W.F. Cao, F.T. Lan, Carbon 48 (2010) 344-351.
DOI URL |
[1] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[2] | Dongsen Geng, Haiqing Li, Ziliang Chen, Yu X. Xu, Qimin Wang. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 150-160. |
[3] | R.H. Shen, Y.T. He, W.Q. Ming, Y. Zhang, X.D. Xu, J.H. Chen. Electron tomography for sintered ceramic materials by a neural network algebraic reconstruction technique [J]. J. Mater. Sci. Technol., 2022, 100(0): 75-81. |
[4] | Nikolaus Jäger, Michael Meindlhumer, Michal Zitek, Stefan Spor, Hynek Hruby, Farwah Nahif, Jaakko Julin, Martin Rosenthal, Jozef Keckes, Christian Mitterer, Rostislav Daniel. Impact of Si on the high-temperature oxidation of AlCr(Si)N coatings [J]. J. Mater. Sci. Technol., 2022, 100(0): 91-100. |
[5] | Longkang Cong, Wei Li, Jiancheng Wang, Shengyue Gu, Shouyang zhang. High-entropy (Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material [J]. J. Mater. Sci. Technol., 2022, 101(0): 199-204. |
[6] | Qiangang Fu, Pei Zhang, Lei Zhuang, Lei Zhou, Jiaping Zhang, Jie Wang, Xianghui Hou, Ralf Riedel, Hejun Li. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples [J]. J. Mater. Sci. Technol., 2022, 96(0): 31-68. |
[7] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[8] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
[9] | Yunsong Niu, Lingling Xing, Feng Yang, Huawei Li, Minghui Chen, Shenglong Zhu, Fuhui Wang. Phase structure of sputtered Ta coating and its ablation behavior by laser pulse heating (LPH) [J]. J. Mater. Sci. Technol., 2021, 65(0): 7-17. |
[10] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[11] | Fangqiang Ning, Jibo Tan, Ziyu Zhang, Xinqiang Wu, Xiang Wang, En-Hou Han, Wei Ke. Effects of thiosulfate and dissolved oxygen on crevice corrosion of Alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66(0): 163-176. |
[12] | Jie Xu, Xuan Kong, Minghui Chen, Qunchang Wang, Fuhui Wang. High-entropy FeNiCoCr alloys with improved mechanical and tribological properties by tailoring composition and controlling oxidation [J]. J. Mater. Sci. Technol., 2021, 82(0): 207-213. |
[13] | Alexander Tkach, Olena Okhay. Comment on “Hole-pinned defect-dipoles induced colossal permittivity in Bi doped SrTiO3 ceramics with Sr deficiency” [J]. J. Mater. Sci. Technol., 2021, 65(0): 151-153. |
[14] | Haifang Liu, Haijun Su, Zhonglin Shen, Di Zhao, Yuan Liu, Yinuo Guo, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu. Preparation of large-size Al2O3/GdAlO3/ZrO2 ternary eutectic ceramic rod by laser directed energy deposition and its microstructure homogenization mechanism [J]. J. Mater. Sci. Technol., 2021, 85(0): 218-223. |
[15] | Xinyue Tang, Junchao Wang, Jing Li, Xinglai Zhang, Peiqing La, Xin Jiang, Baodan Liu. In-situ growth of large-area monolithic Fe2O3/TiO2 catalysts on flexible Ti mesh for CO oxidation [J]. J. Mater. Sci. Technol., 2021, 69(0): 119-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||