J. Mater. Sci. Technol. ›› 2022, Vol. 102: 132-136.DOI: 10.1016/j.jmst.2021.05.080
• Research Article • Previous Articles Next Articles
Jianqi Huanga,b, Zhiyong Liua,b, Teng Yanga,b,*(), Zhidong Zhanga,b
Received:
2021-04-27
Revised:
2021-05-27
Accepted:
2021-05-30
Published:
2022-03-10
Online:
2021-08-26
Contact:
Teng Yang
About author:
*Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. E-mail addresses: yangteng@imr.ac.cn, yanghaiteng@msn.com (T. Yang).Jianqi Huang, Zhiyong Liu, Teng Yang, Zhidong Zhang. New selection rule of resonant Raman scattering in MoS2 monolayer under circular polarization[J]. J. Mater. Sci. Technol., 2022, 102: 132-136.
Fig. 1. Schematics of circularly polarized Raman spectra of MoS2 monolayer. (a) Two Raman-active phonon modes E (including degenerated LO and TO) and $A_{1}^{\prime }$ in the backscattering geometries. Usually, $A_{1}^{\prime }$ does not change the helicity of incident light and therefore has non-zero intensity in the $\bar{Z}\left( {{\sigma }_{+}}{{\sigma }_{+}} \right)Z$ or $\bar{Z}\left( {{\sigma }_{-}}{{\sigma }_{-}} \right)Z$geometry, while E changes the helicity of light and shows up in the $\bar{Z}\left( {{\sigma }_{+}}{{\sigma }_{-}} \right)Z$ or $\bar{Z}\left( {{\sigma }_{-}}{{\sigma }_{+}} \right)Z$ geometry. (b) Two Raman-inactive phonon modes E (LO and TO) and $A_{2}^{\prime\prime }$ in the backscattering geometries.
Fig. 2. (a) The electronic band structure, (b) optical absorption, (c) phonon dispersion relation and (d) k-resolved optical absorption of monolayer MoS2. In (d) the circularly left-polarized (σ+) and right-polarized (σ-) incident laser with energies from 2.80 to 3.20 eV is used. In (b) red arrows are used to highlight the peak positions in the calculated optical absorption spectrum. The inset of (b) is to show the decomposition of peak A and B from the calculated optical spectra (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Fig. 3. First-order resonant Raman spectra of monolayer MoS2 for different laser energies from EL=2.80 eV to 3.20 eV under circularly left-and right-polarizations.
[1] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306 (2004) 666-669.
PMID |
[2] |
A.K. Geim, I.V. Grigorieva, Nature 499 (2013) 419-425.
DOI URL |
[3] | F. Cadiz, E. Courtade, C. Robert, G. Wang, Y. Shen, H. Cai, T. Taniguchi, K. Watanabe, H. Carrere, D. Lagarde, M. Manca, T. Amand, P. Renucci, S. Tongay, X. Marie, B. Urbaszek, Phys. Rev. X 7 (2017) 021026. |
[4] | Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotech-nol. 7 (2012) 699-712. |
[5] |
W. Zhao, R.M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A.H.Castro Neto, G. Eda, Nano Lett. 13 (2013) 5627-5634.
DOI URL |
[6] | K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105 (2010) 136805. |
[7] |
S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, A. Javey, Nano Lett. 14 (2014) 4592-4597.
DOI URL |
[8] | Y. You, X.X. Zhang, T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, T.F. Heinz, Nat. Phys. 11 (2015) 477-481. |
[9] |
R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris, M. Steiner, Nano Lett. 13 (2013) 1416-1421.
DOI PMID |
[10] |
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6 (2011) 147-150.
DOI PMID |
[11] | W. Wu, D. De, S.C. Chang, Y. Wang, H. Peng, J. Bao, S.S. Pei, Appl. Phys. Lett. 102 (2013) 142106. |
[12] |
W. Liu, B. Lee, C.H. Naylor, H.S. Ee, J. Park, A.T.C. Johnson, R. Agarwal, Nano Lett. 16 (2016) 1262-1269.
DOI URL |
[13] | Y. Wang, B.R. Carvalho, V.H. Crespi, Phys. Rev. B 98 (2018) 161405. |
[14] | D. Xiao, G.B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108 (2012) 196802. |
[15] |
K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, Science 344 (2014) 14 89-14 92.
DOI URL |
[16] |
H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Nat. Nanotechnol. 7 (2012) 4 90-4 93.
DOI URL |
[17] |
W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zou, Y. Chen, Y. Wang, C. Cong, W. Huang, T. Yu, Nano Lett. 16 (2016) 1560-1567.
DOI URL |
[18] |
L. Li, L. Shao, X. Liu, A. Gao, B. Zheng H. Wang, G. Hou, K. Shehzad, L. Yu, F. Miao, Y. Shi, Y. Xu, X. Wang, Nat. Nanotechnol. 15 (2020) 743-749.
DOI URL |
[19] | W. Yao, D. Xiao, Q. Niu, Phys. Rev. B 77 (2008) 235406. |
[20] | H.Z. Lu, W. Yao, D. Xiao, S.Q. Shen, Phys. Rev. Lett. 110 (2013) 016806. |
[21] |
S.Y. Chen, C. Zheng, M.S. Fuhrer, J. Yan, Nano Lett. 15 (2015) 2526-2532.
DOI URL |
[22] | R. Saito, Y. Tatsumi, S. Huang, X. Ling, M.S. Dresselhaus, J. Phys. Condens. Mat-ter 28 (2016) 353002. |
[23] | S.G. Drapcho, J. Kim, X. Hong, C. Jin, S. Shi, S. Tongay, J. Wu, F. Wang, Phys. Rev. B 95 (2017) 165417. |
[24] |
Y. Zhao, S. Zhang, Y. Shi, Y. Zhang, R. Saito, J. Zhang, L. Tong, ACS Nano 14 (2020) 10527-10535.
DOI PMID |
[25] |
B. Miller, J. Lindlau, M. Bommert, A. Neumann, H. Yamaguchi, A. Holleitner, A. Hoegele, U. Wurstbauer, Nat. Commun. 10 (2019) 807.
DOI URL |
[26] |
S.Y. Chen, C. Zheng, M.S. Fuhrer, J. Yan, Nano Lett 15 (2015) 2526-2532.
DOI URL |
[27] | A. Grüneis, R. Saito, G.G. Samsonidze, T. Kimura, M.A. Pimenta, A. Jorio, A.G.S. Filho, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 67 (2003) 165402. |
[28] | F. Giustino, M.L. Cohen, S.G. Louie, Phys. Rev. B 76 (2007) 165108. |
[29] |
S. Ponce, E. Margine, C. Verdi, F. Giustino, Comput. Phys. Commun. 209 (2016) 116-133.
DOI URL |
[30] |
H. Frölich, Adv. Phys. 3 (1954) 325-361.
DOI URL |
[31] | C. Verdi, F. Giustino, Phys. Rev. Lett. 115 (2015) 176401. |
[32] | P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21 (2009) 395502. |
[33] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
DOI URL |
[34] |
S. Baroni, S. de Gironcoli, A.Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73 (2001) 515.
DOI URL |
[35] | J. Noffsinger, F. Giustino, B.D. Malone, C.H. Park, S.G. Louie, M.L. Cohen, Com-put. Phys. Commun. 181 (2010) 2140-2148. |
[36] |
H.L. Liu, H. Guo, T. Yang, Z. Zhang, Y. Kumamoto, C.C. Shen, Y.T. Hsu, L.J. Li, R. Saito, S. Kawata, Phys. Chem. Chem. Phys. 17 (2015) 14561-14568.
DOI URL |
[37] |
H.L. Liu, T. Yang, J.H. Chen, H.W. Chen, H. Guo, R. Saito, M. Li, L.J. Li, Sci. Rep. 10 (2020) 15282.
DOI URL |
[38] | H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa, K. Ueno, K. Tsukagoshi, Z. Zhang, M.S. Dresselhaus, R. Saito, Phys. Rev. B 91 (2015) 205415. |
[39] | Y. Tatsumi, T. Kaneko, R. Saito, Phys. Rev. B 97 (2018) 195444. |
[1] | Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou. Advances on strategies for searching for next generation thermal barrier coating materials [J]. J. Mater. Sci. Technol., 2019, 35(5): 833-851. |
[2] | B. Wurentuya, Shuang Ma, B. Narsu, O. Tegus, Zhidong Zhang. Lattice dynamics of FeMnP0.5Si0.5 compound from first principles calculation [J]. J. Mater. Sci. Technol., 2019, 35(1): 127-133. |
[3] | Bin Zhang, Li Liu, Tianshu Li, Ying Li, Mingkai Lei, Fuhui Wang. Adsorption and Diffusion Behavior of Cl- on Sputtering Fe-20Cr Nanocrystalline Thin Film in Acid Solution (pH = 2) [J]. J. Mater. Sci. Technol., 2015, 31(12): 1198-1206. |
[4] | Zhou Yanchun, Xiang Huimin, Feng Zhihai. Theoretical Investigation on Mechanical and Thermal Properties of a Promising Thermal Barrier Material: Yb3Al5O12 [J]. J. Mater. Sci. Technol., 2014, 30(7): 631-638. |
[5] | Zhijun LIN, Yanchun ZHOU, Meishuan LI. Synthesis, Microstructure, and Property of Cr2AlC [J]. J Mater Sci Technol, 2007, 23(06): 721-746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||