J. Mater. Sci. Technol. ›› 2022, Vol. 102: 123-131.DOI: 10.1016/j.jmst.2021.05.082
• Research Article • Previous Articles Next Articles
Zhengzheng Guoa, Penggang Rena,b,*(), Zengping Zhangc, Zhong Daia, Zhenxia Lub, Yanling Jinb, Fang Renb,*(
)
Received:
2021-04-14
Revised:
2021-05-31
Accepted:
2021-05-31
Published:
2022-03-10
Online:
2021-08-26
Contact:
Penggang Ren,Fang Ren
About author:
renfang0824@163.com (F. Ren).Zhengzheng Guo, Penggang Ren, Zengping Zhang, Zhong Dai, Zhenxia Lu, Yanling Jin, Fang Ren. Fabrication of carbonized spent coffee grounds/graphene nanoplates/cyanate ester composites for superior and highly absorbed electromagnetic interference shielding performance[J]. J. Mater. Sci. Technol., 2022, 102: 123-131.
Sample name | GNSs (wt%) | C-SCG (wt%) | EP/CE (wt%) |
---|---|---|---|
C3 | 0 | 3.0 | 97.0 |
C6 | 0 | 6.0 | 94.0 |
C9 | 0 | 9.0 | 91.0 |
G3C0 | 3 | 0 | 97.0 |
G3C3 | 3 | 3.0 | 94.0 |
C3C6 | 3 | 6.0 | 91.0 |
G3C9 | 3 | 9.0 | 88.0 |
Table 1 Composition of the fabricated GNSs/C-SCG/CE composites.
Sample name | GNSs (wt%) | C-SCG (wt%) | EP/CE (wt%) |
---|---|---|---|
C3 | 0 | 3.0 | 97.0 |
C6 | 0 | 6.0 | 94.0 |
C9 | 0 | 9.0 | 91.0 |
G3C0 | 3 | 0 | 97.0 |
G3C3 | 3 | 3.0 | 94.0 |
C3C6 | 3 | 6.0 | 91.0 |
G3C9 | 3 | 9.0 | 88.0 |
Fig. 2. (a) FTIR, (b) XRD and (c) Raman spectra of GNSs and C-SCG; (d) nitrogen adsorption-desorption isotherms and pore size distribution curves of C-SCG.
Fig. 5. (a) Electrical conductivity of the prepared composites as a function of C-SCG loading. (b) Digital images of different brightness of LED connected with the prepared composites.
Fig. 6. (a) SET, (b) SEA and SER of the prepared C-SCG/CE and GNSs/C-SCG/CE composites with various C-SCG loadings at X-band range. (c) Comparison of SET, SEA and SER at the fixed frequency of 9.06 GHz. (d) Power coefficient and (e) absorption efficiency of all prepared composites. (f) Comparison on EMI SE and the SEA/SET ratio for GxCy composites and previously reported EMI shielding composites in literature. (g) Schematic illustration of the EMW transfers across the GNSs/C-SCG/CE composites.
Composites | Filler loading | SET (dB) | SEA (dB) | SER (dB) | SEA/SET | Ref. |
---|---|---|---|---|---|---|
GNSs/C-SCG/CE | GNSs: 3 wt%+C-SCG: 9 wt% | 31.09 | 27.62 | 3.47 | 88.8% | This work |
GNSs/C-SCG/CE | GNSs: 3 wt%+C-SCG: 6 wt% | 23.93 | 19.84 | 4.09 | 82.9% | This work |
GNSs/C-SCG/CE | GNSs: 3 wt%+C-SCG: 3 wt% | 19.99 | 16.06 | 3.93 | 80.3% | This work |
Graphene foam | - | 23 | 15 | 8 | 65.2% | [ |
rGO-Fe3O4/PC/PVDF | 3 wt% | 21 | 12.6 | 8.4 | 60% | [ |
GNSs/CLF/PEEK | GNSs: 2.5 wt%+CLF: 9 wt% | 28.5 | 23.5 | 5 | 82.5% | [ |
Graphene foam | - | 23 | 16 | 7 | 69.6% | [ |
AgNWs/CNF | 12.8 vol.% | 30.2 | 22.1 | 8.1 | 73.2% | [ |
CNT:Ni/PE | CNT: 3 wt%+Ni: 10 vol.% | 27 | 13.5 | 13.5 | 50% | [ |
CNT/PC | 10 wt% | 27 | 21.5 | 5.5 | 79.6% | [ |
CNT/PC | 5 wt% | 24.8 | 19.9 | 4.9 | 80.2% | [ |
CNT:GO-MDA/PVDF | CNT: 3 wt%+GO: 10 wt% | 22 | 13 | 9 | 59.1% | [ |
Table 2 Comparison of EMI shielding performance for our prepared composites with other materials reported in recent years.
Composites | Filler loading | SET (dB) | SEA (dB) | SER (dB) | SEA/SET | Ref. |
---|---|---|---|---|---|---|
GNSs/C-SCG/CE | GNSs: 3 wt%+C-SCG: 9 wt% | 31.09 | 27.62 | 3.47 | 88.8% | This work |
GNSs/C-SCG/CE | GNSs: 3 wt%+C-SCG: 6 wt% | 23.93 | 19.84 | 4.09 | 82.9% | This work |
GNSs/C-SCG/CE | GNSs: 3 wt%+C-SCG: 3 wt% | 19.99 | 16.06 | 3.93 | 80.3% | This work |
Graphene foam | - | 23 | 15 | 8 | 65.2% | [ |
rGO-Fe3O4/PC/PVDF | 3 wt% | 21 | 12.6 | 8.4 | 60% | [ |
GNSs/CLF/PEEK | GNSs: 2.5 wt%+CLF: 9 wt% | 28.5 | 23.5 | 5 | 82.5% | [ |
Graphene foam | - | 23 | 16 | 7 | 69.6% | [ |
AgNWs/CNF | 12.8 vol.% | 30.2 | 22.1 | 8.1 | 73.2% | [ |
CNT:Ni/PE | CNT: 3 wt%+Ni: 10 vol.% | 27 | 13.5 | 13.5 | 50% | [ |
CNT/PC | 10 wt% | 27 | 21.5 | 5.5 | 79.6% | [ |
CNT/PC | 5 wt% | 24.8 | 19.9 | 4.9 | 80.2% | [ |
CNT:GO-MDA/PVDF | CNT: 3 wt%+GO: 10 wt% | 22 | 13 | 9 | 59.1% | [ |
Fig. 7. (a) EMI SE as a function of frequency for G3C9 with various thicknesses; (b) SET, SEA and SER as a function of shielding thickness at 9.06 GHz.
[1] | J.T. Li, G.C. Zhang, X. Fan, Q. Gao, H.M. Zhang, J.B. Qin, X.T. Shi, X.M. Fang, Appl. Surf. Sci. 552 (2021) 149232. |
[2] |
L. Wang, X.T. Shi, J.L. Zhang, Y.L. Zhang, J.W. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[3] | M. Sang, G.H. Liu, S. Liu, Y.X. Wu, S.H. Xuan, S. Wang, S.Y. Xuan, W.Q. Jiang, X.L. Gong, Chem. Eng. J. 414 (2021) 128883. |
[4] |
M.N. Qu, X. Yang, L. Peng, L.L. Liu, Y. Chen, Z. Zhao, X.R. Liu, T.J. Zhang, J.M. He, Carbon 174 (2021) 110-122.
DOI URL |
[5] |
C.T. Lan, L.H. Zou, N. Wang, Y.P. Qiu, Y. Ma, J. Colloid Interface Sci. 590 (2021) 467-475.
DOI URL |
[6] | P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu, Z.L. Ma, Y.Q. Guo, J.W. Gu, Nano-Mi-cro Lett 13 (2021) 91. |
[7] | X.T. Yang, S.G. Fan, Y. Li, Y.G.Li Y.Q.Guo, K.P. Ruan, S.M. Zhang, J.L. Zhang, J. Kong, J.W. Gu, Compos. Pt. A-Appl. Sci. Manuf. 128 (2020) 105670. |
[8] | B.B Sun, S.J. Sun, P. He, H.Y. Mi, B.B. Dong, C.T. Liu, C.Y. Shen, Chem. Eng. J. 416 (2021) 129083. |
[9] | W.C. Yu, T. Wang, Y.H. Liu, Z.G. Wang, L. Xu, J.H. Tang, K. Dai, H.J. Duan, J.Z. Xu, Z.M. Li, Chem. Eng. J. 393 (2020) 124644. |
[10] |
L.Y. Han, Q. Song, K.Z. Li, X.M. Yin, J.J. Sun, H.J. Li, F.P. Zhang, X.R. Ren, X. Wang, J. Mater. Sci. Technol. 72 (2021) 154-161.
DOI URL |
[11] | F. Shahzad, P. Kumar, Y.H. Kim, S.M. Hong, C.M. Koo, ACS Appl. Mater. Inter-faces 8 (2016) 9361-9369. |
[12] |
S. Biswas, I. Arief, S.S. Panja, S. Bose, ACS Appl. Mater. Interfaces 9 (2017) 3030-3039.
DOI URL |
[13] | H. Duan, P. He, H. Zhu, Y. Yang, G. Zhao, Y. Liu, Compos. Pt. B-Eng. 212 (2021) 108690. |
[14] | F. Shahzad, A. Iqbal, H. Kim, C.M. Koo, Adv. Mater. 32 (2020) 2002159. |
[15] |
S.T. Li, W.C. Li, J. Nie, D.Y. Liu, G.X. Sui, Carbon 143 (2019) 154-161.
DOI URL |
[16] | C.K. Song, X.Y. Meng, H. Chen, Z.G. Liu, Q. Zhan, Y.M. Sun, W.M. Lu, Y.Q. Dai, Compos. Commun. 24 (2021) 100632. |
[17] |
T.Y. Zhou, C. Xu, H.P. Liu, Q.W. Wei, H. Wang, J.G. Zhang, T. Zhao, Z.B. Liu, X.F. Zhang, Y. Zeng, H.M. Cheng, W.C. Ren, ACS Nano 14 (2020) 3121-3128.
DOI URL |
[18] |
Y.Y. Wang, W.J. Sun, D.X. Yan, K. Dai, Z.M. Li, Carbon 176 (2021) 118-125.
DOI URL |
[19] | Y.Y. Yao, S.H. Jin, X.L. Ma, R. Yu, H.M. Zou, H.J. Wang, X.J. Lv, Q.H. Shu, Compos. Sci. Technol. 200 (2020) 108457. |
[20] |
Z.H. Zeng, C.X. Wang, T.T. Wu, D.X. Han, M. Luković, F. Pan, G. Siqueira, G. Nys-tröm, J. Mater. Chem. A 8 (2020) 17969-17979.
DOI URL |
[21] |
W.C. Yu, T. Wang, G.Q. Zhang, Z.G. Wang, H.M. Yin, D.X. Yan, J.Z. Xu, Z.M. Li, Compos. Sci. Technol. 167 (2018) 260-267.
DOI URL |
[22] | Y.L. Xu, A. Uddin, D. Estevez, Y. Luo, H.X. Peng, F.X. Qin, Compos. Sci. Technol. 189 (2020) 108022. |
[23] |
Y.D. Xu, Y.Q. Yang, D.X. Yan, H.J. Duan, G.Z. Zhao, Y.Q. Liu, ACS Appl. Mater. Interfaces 10 (2018) 19143-19152.
DOI URL |
[24] | M.W. Dai, Y.H. Zhai, Y. Zhang, Chem. Eng. J. 421 (2020) 127749. |
[25] |
B. Zhou, Q.T. Li, P.H. Xu, Y.Z. Feng, J.M. Ma, C.T. Liu, C.Y. Shen, Nanoscale 13 (2021) 2378-2388.
DOI URL |
[26] |
C.B. Liang, H. Qiu, P. Song, X.T. Shi, J. Kong, J.W. Gu, Sci. Bull. 65 (2020) 616-622.
DOI URL |
[27] |
Y. Zheng, Y.J. Song, T. Gao, S.Y. Yan, H.H. Hu, F. Cao, Y.P. Duan, X.F. Zhang, ACS Appl. Mater. Interfaces 12 (2020) 40802-40814.
DOI URL |
[28] |
C.B. Liang, H. Qiu, Y.Y. Han, H.B. Gu, P. Song, L. Wang, J. Kong, D.P. Cao, J.W. Gu, J. Mater. Chem. C 7 (2019) 2725-2733.
DOI URL |
[29] | J.B. Li, X.Y. Zhao, W.J. Wu, X.W. Ji, Y.L. Lu, L.Q. Zhang, Chem. Eng. J. 415 (2021) 129054. |
[30] |
Y. Mu, H. Li, J.X. Deng, W.C. Zhou, J. Alloy. Compd. 724 (2017) 633-640.
DOI URL |
[31] | Q.Y. Jiang, X. Liao, J.M. Yang, G. Wang, J. Chen, C.X. Tian, G.X. Li, Compos. Com-mun. 21 (2020) 100416. |
[32] | S.Y. Guo, H.J. Xu, M.L. Dong, M.Y. Peng, C.T. Liu, C.Y. Shen, Appl. Surf. Sci. 525 (2020) 146569. |
[33] | J.W. Li, Y.Q. Ding, Q. Gao, H.M. Zhang, X.H. He, Z.L. Ma, B. Wang, G.C. Zhang, Compos. Pt. B-Eng. 190 (2020) 107935. |
[34] | Y. Zhang, J. Yu, J.Y. Lu, C.J. Zhu, D.M. Qi, J. Alloy. Compd. 870 (2021) 159442. |
[35] |
Z.H. Zeng, Y.F. Zhang, X.Y.D. Ma, S.I.S. Shahabadi, B.Y. Che, P.Y. Wang, X.H. Lu, Carbon 140 (2018) 227-236.
DOI URL |
[36] |
X. Wen, H.S. Liu, L. Zhang, J. Zhang, C. Fu, X.Z. Shi, X.C. Chen, E. Mijowska, M.J. Chen, D.Y. Wang, Bioresour. Technol. 272 (2019) 92-98.
DOI URL |
[37] | M.R. Atelge, A.E. Atabani, S. Abut, M. Kaya, C. Eskicioglu, G. Semaan, C. Lee, Y.S. Yildiz, S. Unalan, R. Mohanasundaram, F. Duman, G. Kumar, Bioresour. Technol. 322 (2021) 124470. |
[38] | J.C. López-Linares, M.T. García-Cubero, M. Coca, S. Lucas, Biomass Bioenerg 147 (2021) 106026. |
[39] |
W.J. Kyung, H.C. Brian, J.H. Min, U.J. Tae, H.A. Kyu, Bioresour. Technol. 219 (2016) 185-195.
DOI URL |
[40] | E. Ribeiro, T.S. Rocha, S.H. Prudencio, Food Chem 348 (2021) 129061. |
[41] |
S.Y. Tsai, R. Muruganantham, S.H. Tai, B.K. Chang, S.C. Wu, Y.L. Chueh, W.R. Liu, J. Taiwan Inst. Chem. Eng. 97 (2019) 178-188.
DOI URL |
[42] | R. Hossain, R.K. Nekouei, I. Mansuri, V. Sahajwalla, J. Energy Storage 33 (2021) 102113. |
[43] |
N. Zhang, Z. Wang, R.G. Song, Q.L. Wang, H.Y. Chen, B. Zhang, H.F. Lv, Z. Wu, D.P. He, Sci. Bull. 64 (2019) 540-546.
DOI URL |
[44] | G.X. Wang, Q.Z. Yu, Y.M. Hu, G.Y. Zhao, J.W. Chen, H. Li, N. Jiang, D.W. Hu, Y.Q. Xu, Y.T. Zhu, A.G. Nasibulin, Compos. Commun. 21 (2020) 100417. |
[45] | Q. Liu, Y. Zhang, Y.B. Liu, Z.X. Liu, B.L. Zhang, Q.Y. Zhang, J. Alloy. Compd. 860 (2021) 158151. |
[46] |
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, ACS Nano 14 (2020) 16643-16653.
DOI URL |
[47] | B. Zhou, M.J. Su, D.Z. Yang, G.J. Han, Y.Z. Feng, B. Wang, ACS Appl. Mater. Inter-faces 12 (2020) 40859-40869. |
[48] |
F. Ren, Z.Z. Guo, H. Guo, L.C. Jia, Y.C. Zhao, P.G. Ren, D.X. Yan, Polymers 10 (2018) 933.
DOI URL |
[49] |
L. Tang, J.L. Zhang, J.W. Gu, Chin. J. Aeronaut. 34 (2021) 659-668.
DOI URL |
[50] | L. Tang, J.L. Zhang, C.L. Wu, Y.S. Tang, H. Ma, J. Kong, J.W. Gu, Compos. Pt. B-Eng. 212 (2021) 108680. |
[51] |
T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, R.B. Mathur, J. Mater. Chem. A 1 (2013) 9138.
DOI URL |
[52] |
T. Nisar, Z.C. Wang, X. Yang, Y. Tian, M. Iqbal, Y.R. Guo, Int. J. Biol. Macromol. 106 (2018) 670-680.
DOI URL |
[53] |
Y.C. Chen, W.H. Chen, B.J. Lin, J.S. Chang, H.C. Ong, Appl. Energ. 181 (2016) 110-119.
DOI URL |
[54] |
J.F. Mendes, J.T. Martins, A. Manrich, A.R.Sena Neto, A.C.M. Pinheiro, L.H.C. Mattoso, M.A. Martins, Carbohyd. Polym. 210 (2019) 92-99.
DOI PMID |
[55] |
F. Wu, K. Yang, Q. Li, T. Shah, M. Ahmad, Q.Y. Zhang, B.L. Zhang, Carbon 173 (2021) 918-931.
DOI URL |
[56] |
C.T. Xing, S.P. Zhu, Z. Ullah, X.C. Pan, F. Wu, X.B. Zuo, J.F. Liu, M.L. Chen, W.W. Li, Q. Li, L.W. Liu, Appl. Surf. Sci. 491 (2019) 616-623.
DOI URL |
[57] | Y.M. Chen, L. Pang, Li Y, H. Luo, G.G. Duan, C.T. Mei, W.H. Xu, W. Zhou, K.M. Liu, S.H. Jiang, Compos. Pt. A-Appl. Sci. Manuf. 135 (2020) 105960. |
[58] |
P.K.S. Mural, S.P. Pawar, S. Jayanthi, G. Madras, A.K. Sood, S. Bose, ACS Appl. Mater. Interfaces 7 (2015) 16266-16278.
DOI URL |
[59] |
A.S. Babal, R. Gupta, B.P. Singh, V.N. Singh, S.R. Dhakate, R.B. Mathur, RSC Adv. 4 (2014) 64649-64658.
DOI URL |
[60] |
M. Arjmand, M. Mahmoodi, G.A. Gelves, S. Park, U. Sundararaj, Carbon 49 (2011) 3430-3440.
DOI URL |
[61] |
I. Arief, S. Biswas, S. Bose, ACS Appl. Mater. Interfaces 9 (2017) 19202-19214.
DOI URL |
[1] | Lulu Zhang, Junchen Luo, Shu Zhang, Jun Yan, Xuewu Huang, Ling Wang, Jiefeng Gao. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding [J]. J. Mater. Sci. Technol., 2022, 98(0): 62-71. |
[2] | Kun Qian, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, Vincent G. Harris. Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites [J]. J. Mater. Sci. Technol., 2021, 83(0): 256-263. |
[3] | Liyuan Han, Qiang Song, Kezhi Li, Xuemin Yin, Jiajia Sun, Hejun Li, Fengpei Zhang, Xinran Ren, Xi Wang. Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding [J]. J. Mater. Sci. Technol., 2021, 72(0): 154-161. |
[4] | Xin Gao, Hongyan Yue, Erjun Guo, Shaolin Zhang, Longhui Yao, Xuanyu Lin, Bao Wang, Enhao Guan. Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets [J]. J. Mater. Sci. Technol., 2018, 34(10): 1925-1931. |
[5] | Xinning Luan, Ying Wang. Thermal Annealing and Graphene Modification of Exfoliated Hydrogen Titanate Nanosheets for Enhanced Lithium-ion Intercalation Properties [J]. J. Mater. Sci. Technol., 2014, 30(9): 839-846. |
[6] | Xuan Hao, Xiaowei Yin, Litong Zhang, Laifei Cheng. Dielectric, Electromagnetic Interference Shielding and Absorption Properties of Si3N4-PyC Composite Ceramics [J]. J. Mater. Sci. Technol., 2013, 29(3): 249-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||