J. Mater. Sci. Technol. ›› 2022, Vol. 100: 75-81.DOI: 10.1016/j.jmst.2021.05.051
• Research Article • Previous Articles Next Articles
R.H. Shen, Y.T. He, W.Q. Ming*(), Y. Zhang, X.D. Xu, J.H. Chen*(
)
Received:
2021-03-13
Revised:
2021-05-14
Accepted:
2021-05-16
Published:
2022-02-20
Online:
2022-02-15
Contact:
W.Q. Ming,J.H. Chen
About author:
jhchen123@hnu.edu.cn (J.H. Chen).1 These authors equally contributed to this work.
R.H. Shen, Y.T. He, W.Q. Ming, Y. Zhang, X.D. Xu, J.H. Chen. Electron tomography for sintered ceramic materials by a neural network algebraic reconstruction technique[J]. J. Mater. Sci. Technol., 2022, 100: 75-81.
Fig. 1. (a, e) Model 1 and Model 2. (b, f) The tomograms reconstructed by SIRT with 100 iterations from the sinograms of Model 1 and Model 2. The tilt range is from -70° to +70° with 1° increment. (c, g) The central part of FFTs of (a) and (e). (d, h) The central part of FFTs of (b) and (f).
Fig. 2. (a) The flow chart of NNART algorithm. (b) The full connection feedforward neural network. In (a), I represents the predicted image in size of N × N pixels reshaped from the output layer L(4) which is a vector with N2 elements. R represents Radon transformation. S and Sexp represent the predicted and experimental sinograms respectively. Symbol t is the iteration number and tmax is a predefined maximum iteration number. Iavg is the final result averaged from several repetitive reconstructions.
Fig. 3. (a) The loss profile during iterations in logarithm scale. (b-e) The predicted tomograms at various iteration numbers: (b) 10, (c) 40, (d) 400 and (e) 3000. (f-k) Comparison between the FFTs of the original image (f) and the predicted tomograms after various iterations: (g) 10, (h) 40, (i) 400 and (j) 3000. Only the central parts (60 × 30 pixels) of the FFTs are displayed with the same absolute grayscale contrast limits for comparison. (k) The line profiles along the z-axis of the images (f-j). All results are averaged from 20 repeats as mentioned above.
Fig. 4. (a) Experimental setting of the tilted HAADF-STEM images acquisition. The incident electron beam is along the z-axis. (b, c) HAADF-STEM images of the SiC specimen at 0° and 70°. The region between the red dashed lines (c) is the field of view of (b). The white dashed rectangle (a) and lines (b, c) all indicate the same slice of the specimen that will be analyzed in following.
Fig. 5. A slice of the SiC specimen reconstructed by (a) NNART and (c) TVM. (b, d) The enlarged views of the central area in the FFTs (the insert images) of (a, c).
Fig. 6. (a, b) The side view of the tomograms reconstructed by NNART and TVM. (c) The HAADF image at 0° tilt. The black arrows in (a, b) represent the observation directions of (d-g). (d, e) The front and back view of the volume indicated by the black dashed polygon marked in (a). (f, g) The front and back views of the same volume in (b). The area marked by a blue dashed rectangle in (d) will be analyzed in the following.
Fig. 7. Comparison of the 3D renderings by NNART and experimental images of the graphite phase at different tilt angles of (a, a’) 0°. (b, b’) 15°. (c, c’) 30°. (d, d’) 45°. (e, e’) 60°.
Fig. 9. Comparison between the NNART and the TVM algorithms with various tilt ranges of (a, e) -70° to +70°. (b, f) -60° to +60°. (c, g) -50° to +50°. (d, h) -40° to +40°. The tilt increment is 1°. The iteration numbers of NNART and TVM were 6000 and 5000 to ensure convergence, respectively. The MSEs between the reconstructed images and the raw image are shown at the right bottom corner. All images share the same absolute grayscale contrast limit for comparison.
Fig. 10. Results reconstructed by (a, c) NNART and (b, d) TVM. The noise levels are indicated by the SNR in the sinograms: (a, b) SNR = 30, (c, d) SNR = 20. The tilt range of the sinogram is from -60° to 60° with an increment of 1°. The MSEs between the reconstructed images and the raw image are shown at the right bottom corner.
[1] |
E. Biermans, L. Molina, K.J. Batenburg, S. Bals, G. Van Tendeloo, Nano Lett. 10 (2010) 5014-5019.
DOI PMID |
[2] |
C. Wang, H. Duan, C. Chen, P. Wu, D. Qi, H. Ye, H.J. Jin, H.L. Xin, K. Du, Matter 3 (2020) 1999-2011.
DOI URL |
[3] |
M. Weyland, Top. Catal. 21 (2002) 175-183.
DOI URL |
[4] |
R.H. Shen, W.Q. Ming, J.H. Chen, Y.T. He, S.B. Mi, C.S. Ma, Ultramicroscopy 205 (2019) 27-38.
DOI PMID |
[5] |
S.K. Malladi, Q. Xu, M.A. Van Huis, F.D. Tichelaar, K.J. Batenburg, B. Dubiel, A. Czyrska-Filemonowicz, H.W. Zandbergen, Nano Lett. 14 (2014) 384-389.
DOI PMID |
[6] |
X.B. Yang, J.H. Chen, J.Z. Liu, F. Qin, J. Xie, C.L. Wu, J. Alloys Compd. 610 (2014) 69-73.
DOI URL |
[7] | X.W. Yu, J.H. Chen, W.Q. Ming, X.B. Yang, T.T. Zhao, R.H. Shen, Y.T. He, C.L. Wu, Acta Metall. Sin. Engl. Lett. 33 (2020) 1518-1526. |
[8] |
P.D. Dahlberg, S. Saurabh, A.M. Sartor, J. Wang, P.G. Mitchell, W. Chiu, L. Shapiro, W.E. Moerner, PNAS 117 (2020) 13937-13944.
DOI PMID |
[9] |
L.W. Goldman, J. Nucl. Med. Technol. 36 (2008) 57-68.
DOI PMID |
[10] |
D. Wolf, A. Lubk, H. Lichte, Ultramicroscopy 136 (2014) 15-25.
DOI PMID |
[11] |
R. Gordon, R. Bender, G.T. Herman, J. Theor. Biol. 29 (1970) 471-481.
PMID |
[12] | A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, Society for Industrial and Applied Mathematics, 2011. |
[13] |
A.H. Andersen, A.C. Kak, Ultrason. Imaging 6 (1984) 81-94.
DOI URL |
[14] |
L. Paavolainen, E. Acar, U. Tuna, S. Peltonen, T. Moriya, P. Soonsawad, V. Mar- joma, R.H. Cheng, U. Ruotsalainen, PLoS ONE 9 (2014) e108978.
DOI URL |
[15] |
L.C. Gontard, Ultramicroscopy 154 (2015) 64-72.
DOI PMID |
[16] |
L. Kovacik, S. Kereiche, J.L. Hoog, P. Juda, P. Matula, I. Raska, J. Struct. Biol. 186 (2014) 141-152.
DOI URL |
[17] | S.F. Yau, S.H. Wong, SPIE 2664 (1996) 170-181. |
[18] | A. Kupsch, A. Lange, M.P. Hentschel, S. Lück, V. Schmidt, R. Grothausmann, A. Hilger, I. Manke, J. Microsc. (Oxford, U. K.) 261 (2015) 36-45. |
[19] |
K.J. Batenburg, S. Bals, J. Sijbers, C. Kubel, P.A. Midgley, J.C. Hernandez, U. Kaiser, E.R. Encina, E.A. Coronado, G. Van Tendeloo, Ultramicroscopy 109 (2009) 730-740.
DOI PMID |
[20] |
S. Bals, K.J. Batenburg, D. Liang, O. Lebedev, G. Van Tendeloo, A. Aerts, J.A. Martens, C.E.A. Kirschhock, J. Am. Chem. Soc. 131 (2009) 4769-4773.
DOI URL |
[21] |
S. Bals, K.J. Batenburg, J. Verbeeck, J. Sijbers, G. Van Tendeloo, Nano Lett 7 (2007) 3669-3674.
DOI URL |
[22] |
X. Zhuge, H. Jinnai, R.E. Dunin-Borkowski, V. Migunov, S. Bals, P. Cool, A.J. Bons, K.J. Batenburg, Ultramicroscopy 175 (2017) 87-96.
DOI URL |
[23] |
M. Persson, D. Bone, H. Elmqvist, Phys. Med. Biol. 46 (2001) 853-866.
PMID |
[24] |
L.I. Rudin, S. Osher, E. Fatemi, Phys. D 60 (1992) 259-268.
DOI URL |
[25] | B. Goris, W. Van den Broek, K.J. Batenburg, H. Heidari Mezerji, S. Bals, Ultra- microscopy 113 (2012) 120-130. |
[26] |
Y. Jiang, E. Padgett, R. Hovden, D.A. Muller, Ultramicroscopy 186 (2018) 94-103.
DOI PMID |
[27] |
G. Ding, Y. Li, R. Zhang, H.L. Xin, Sci. Rep. 9 (2019) 12803.
DOI URL |
[28] |
D.M. Pelt, K.J. Batenburg, IEEE Trans. Image Process. 22 (2013) 5238-5251.
DOI URL |
[29] |
E. Bladt, D.M. Pelt, S. Bals, K.J. Batenburg, Ultramicroscopy 158 (2015) 81-88.
DOI PMID |
[30] |
F. Yang, T.A. Pham, H. Gupta, M. Unser, J. Ma, Opt. Express 28 (2020) 3905-3921.
DOI URL |
[31] |
V. Srinivasan, Y.K. Han, S.H. Ong, Image Vis. Comput. 11 (1993) 278-282.
DOI URL |
[32] |
X.F. Ma, M. Fukuhara, T. Takeda, Nucl. Instrum. Methods Phys. Res. Sect. A 449 (2000) 366-377.
DOI URL |
[33] | R.W. Deming, in: Proc. STIS’98: Joint Conf. Science and Tech. Intelligent Sys.(ISIC/CIRA/ISAS), 1998, pp. 422-427. |
[34] |
A. Cichocki, R. Unbehauen, M. Lendl, K. Weinzierl, Neurocomputing 8 (1995) 7-41.
DOI URL |
[35] |
J. Wang, J. Meng, X. Huang, D. Feng, Signal Process 86 (2006) 2495-2502.
DOI URL |
[36] |
M. Teranishi, Neurocomputing 172 (2016) 399-404.
DOI URL |
[37] |
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323 (1986) 533-536.
DOI URL |
[38] | Y. Zhang, C.L. Wu, Y.D. Wang, J.H. Chen, Y. Qiu, X.B. Yang, Y.Z. Gou, Mater. Char- act. 146 (2018) 91-100. |
[39] |
U. Skoglund, L.-G. Öfverstedt, R.M. Burnett, G. Bricogne, J. Struct. Biol. 117 (1996) 173-188.
PMID |
[40] | I. Aganj, A. Bartesaghi, M. Borgnia, H.Y. Liao, G. Sapiro, S. Subramaniam, Proc. IEEE Int. Symp. Biomed. Imaging (2007) 217-220. |
[41] | J. Radon, Berichte Saechsiche Akad. Wissenschaften. Math. Phys. Klass. 69 (1917) 262-277. |
[42] | P.D. Nellist, S.J. Pennycook, Adv. Imaging Electron Phys. 113 (2000) 147-203. |
[43] | J. Frank, Electron Tomography, Springer, New York, 2006. |
[44] |
J.H. Chen, G. Van Tendeloo, J. Electron Microsc. 48 (1999) 121-129.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||