J. Mater. Sci. Technol. ›› 2021, Vol. 88: 56-65.DOI: 10.1016/j.jmst.2021.02.011

Previous Articles     Next Articles

MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption

Sai Gao, Guozheng Zhang, Yi Wang, Xiaopeng Han, Ying Huang, Panbo Liu*()   

  1. School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, 710129, China
  • Received:2021-01-30 Revised:2021-02-24 Accepted:2021-02-27 Published:2021-03-19 Online:2021-03-19
  • Contact: Panbo Liu
  • About author:*E-mail address: liupanbo@nwpu.edu.cn (P. Liu).

Abstract:

Lightweight and high-performance are two determining factors for metal-organic-frameworks (MOFs) derived microwave absorbers. However, most of the reported MOFs derived absorbers usually possess high filler loading. Herein, a series of MOFs derived magnetic porous carbon microspheres with tunable diameter and high specific surface area have been synthesized via a pyrolysis process. The synthesized magnetic porous carbon microspheres, constructed by uniformly distributed core-shell Ni@C, exhibit high-performance microwave absorption with a low filler loading of 10 wt%. Considering the mciro-mesoporous structures, matched impedance, strong conductive loss, enhanced dipolar/interfacial polarization as well as strong magnetic coupling network, a minimum reflection loss of -60 dB and an absorption bandwidth of 7.0 GHz can be achieved at 2.6 mm. Moreover, the bandwidth reaches as wide as 10.2 GHz when the thickness is 4 mm. In addition, compared with other MOFs derived absorbers, this work provides us a simple strategy for the synthesis of porous carbon microspheres with lightweight and high-performance microwave absorption for practical applications.

Key words: Metal-organic-frameworks, Carbon microspheres, Magnetic particles, Core-shell structure, Microwave absorption