J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (5): 930-938.DOI: 10.1016/j.jmst.2018.11.004
• Orginal Article • Previous Articles Next Articles
Chaomin Zhangab, Yong Jiangabc?(), Fuhua Caoa, Tao Huac, Yiren Wanga, Dengfeng Yinab?(
)
Received:
2018-06-10
Accepted:
2018-08-12
Online:
2019-05-10
Published:
2019-02-20
Contact:
Jiang Yong,Yin Dengfeng
About author:
1 These authors contribute equally to this paper.
Chaomin Zhang, Yong Jiang, Fuhua Cao, Tao Hu, Yiren Wang, Dengfeng Yin. Formation of coherent, core-shelled nano-particles in dilute Al-Sc-Zr alloys from the first-principles[J]. J. Mater. Sci. Technol., 2019, 35(5): 930-938.
fcc-Al | Al3Sc-L12 | Al3Zr-L12 | |||||||
---|---|---|---|---|---|---|---|---|---|
PAW-PBE | Other Calc. | Expt. | PAW-PBE | Other Calc. | Expt. | PAW-PBE | Other Calc | Expt. | |
a0(?) | 4.04 | 3.97 [ | 4.05 [ | 4.106 | 4.038 [ | 4.101 [ | 4.107 | 4.04 [ | 4.05 [ |
C11(GPa) | 125.8 | 106 [ | 114.3 [ | 180.0 | 191 [ | 183.0 [ | 179.3 | 189.3 [ | |
C12(GPa) | 54.0 | 68.6 [ | 61.9 [ | 39.6 | 43 [ | 46.0 [ | 64.0 | 66.1 [ | |
C44(GPa) | 37.9 | 33.6 [ | 31.6 [ | 71.0 | 82 [ | 68.0 [ | 72.8 | 84.4 [ | |
B(GPa) | 77.9 | 79.2 [ | 75.8 [ | 86.7 | 91.6 [ | 91.7 [ | 102.0 | 107.2 [ | |
G(GPa) | 37.0 | 28.3 [ | 29.4 [ | 71.0 | 71.7 [ | 68.2 [ | 66.0 | 67.5 [ 64.1 [ | |
E(GPa) | 96.0 | 78.1 [ | 167.0 | 164.0 | 166.1 [ 158.6 [ |
Table 1 Calculated bulk structures and elastic properties of Al, L12-Al3Sc, and L12-Al3Zr.
fcc-Al | Al3Sc-L12 | Al3Zr-L12 | |||||||
---|---|---|---|---|---|---|---|---|---|
PAW-PBE | Other Calc. | Expt. | PAW-PBE | Other Calc. | Expt. | PAW-PBE | Other Calc | Expt. | |
a0(?) | 4.04 | 3.97 [ | 4.05 [ | 4.106 | 4.038 [ | 4.101 [ | 4.107 | 4.04 [ | 4.05 [ |
C11(GPa) | 125.8 | 106 [ | 114.3 [ | 180.0 | 191 [ | 183.0 [ | 179.3 | 189.3 [ | |
C12(GPa) | 54.0 | 68.6 [ | 61.9 [ | 39.6 | 43 [ | 46.0 [ | 64.0 | 66.1 [ | |
C44(GPa) | 37.9 | 33.6 [ | 31.6 [ | 71.0 | 82 [ | 68.0 [ | 72.8 | 84.4 [ | |
B(GPa) | 77.9 | 79.2 [ | 75.8 [ | 86.7 | 91.6 [ | 91.7 [ | 102.0 | 107.2 [ | |
G(GPa) | 37.0 | 28.3 [ | 29.4 [ | 71.0 | 71.7 [ | 68.2 [ | 66.0 | 67.5 [ 64.1 [ | |
E(GPa) | 96.0 | 78.1 [ | 167.0 | 164.0 | 166.1 [ 158.6 [ |
Substituting element | Substituted element | ΔG (eV) | |
---|---|---|---|
Substituted element goes into Al | Substituted element goes Into Al3X | ||
ZrinAl | Al(in Al3Sc) | 1.835 | 1.835 |
Sc(in Al3Sc) | -0.170 | -0.945 | |
Zr(in Al3Zr) | Al(in Al3Sc) | 2.665 | 2.665 |
Sc(in Al3Sc) | 0.661 | -0.115 | |
ScinAl | Al(in Al3Zr) | 1.275 | 1.275 |
Zr(in Al3Zr) | -0.020 | -0.850 | |
Sc(in Al3Sc) | Al(in Al3Zr) | 2.051 | 2.051 |
Zr(in Al3Zr) | 0.755 | -0.075 |
Table 2 Calculated substitution formation energies (eV) for Zr and Sc.
Substituting element | Substituted element | ΔG (eV) | |
---|---|---|---|
Substituted element goes into Al | Substituted element goes Into Al3X | ||
ZrinAl | Al(in Al3Sc) | 1.835 | 1.835 |
Sc(in Al3Sc) | -0.170 | -0.945 | |
Zr(in Al3Zr) | Al(in Al3Sc) | 2.665 | 2.665 |
Sc(in Al3Sc) | 0.661 | -0.115 | |
ScinAl | Al(in Al3Zr) | 1.275 | 1.275 |
Zr(in Al3Zr) | -0.020 | -0.850 | |
Sc(in Al3Sc) | Al(in Al3Zr) | 2.051 | 2.051 |
Zr(in Al3Zr) | 0.755 | -0.075 |
Fig. 1 (a) The possible 001Al/001Al3X interface structures: (a1) the Al-terminated and top-coordinated, (a2) the Al-terminated and bridge-coordinated, (a3) the AlX-terminated and top-coordinated, (a4) the AlX-terminated and bridge-coordinated. (b) The possible 110Al/110Al3X interface structures: (b1) the Al-terminated and top-coordinated, (b2) the Al-terminated and hollow-coordinated, (b3) the AlX-terminated and top-coordinated, (b4) the AlX-terminated and hollow-coordinated. (c) The possible 111Al/111Al3X interface structures: (c1) the AlX-terminated and top-coordinated, (c2) the AlX-terminated and hollow-coordinated. Note the two nearest-neighboring atomic layers around the interfaces are highlighted as red-dashed lines.
Fig. 2 Prediction of interface energy γ (J/m2) and coherent strain energy ΔGcs (eV/atom) of (a) Al/Al3Sc, (b) Al/Al3Zr, and (c) Al3Sc/Al3Zr interfaces, with various contacting facets of (001)/(001), (110)/(110), and (111)/(111).
Fig. 4 Calculated total formation energies versus precipitate radius for four candidate precipitation structures under various aging temperatures and the Sc/Zr atom ratios. The black curve denotes the formation of two separated Al3Zr(L12) and Al3Sc(L12) particles, the blue curve denotes the core-shelled Sc(Zr) structure, the green curve denotes the homogeneous Al3(ScxZr1-x)structure, and the red curve denotes the core-shelled Zr(Sc) structure.
|
[1] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[2] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[3] | Kaiming Cheng, Jiaxing Sun, Huixia Xu, Jin Wang, Chengwei Zhan, Reza Ghomashchi, Jixue Zhou, Shouqiu Tang, Lijun Zhang, Yong Du. Diffusion growth of ϕ ternary intermetallic compound in the Mg-Al-Zn alloy system: In-situ observation and modeling [J]. J. Mater. Sci. Technol., 2021, 60(0): 222-229. |
[4] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[5] | Qiuyan Huang, Yang Liu, Aiyue Zhang, Haoxin Jiang, Hucheng Pan, Xiaohui Feng, Changlin Yang, Tianjiao Luo, Yingju Li, Yuansheng Yang. Age hardening responses of as-extruded Mg-2.5Sn-1.5Ca alloys with a wide range of Al concentration [J]. J. Mater. Sci. Technol., 2020, 38(0): 39-46. |
[6] | Yinli Peng, Nan Wang. Effect of phase-separated patterns on the formation of core-shell structure [J]. J. Mater. Sci. Technol., 2020, 38(0): 64-72. |
[7] | Honglei Hu, Mingjiu Zhao, Lijian Rong. Retarding the precipitation of η phase in Fe-Ni based alloy through grain boundary engineering [J]. J. Mater. Sci. Technol., 2020, 47(0): 152-161. |
[8] | Zhang Mengmeng, Li Xiaopeng, Zhao Jun, Han Xiaopeng, Zhong Cheng, Hu Wenbin, Deng Yida. Surface/interface engineering of noble-metals and transition metal-based compounds for electrocatalytic applications [J]. J. Mater. Sci. Technol., 2020, 38(0): 221-236. |
[9] | Wei Cui, Qibin Song, Huhu Su, Zhiqing Yang, Rui Yang, Na Li, Xing Zhang. Synergistic effects of Mg-substitution and particle size of chicken eggshells on hydrothermal synthesis of biphasic calcium phosphate nanocrystals [J]. J. Mater. Sci. Technol., 2020, 36(0): 27-36. |
[10] | Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36(0): 91-96. |
[11] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
[12] | Ruifeng Dong, Jinshan Li, Hongchao Kou, Jiangkun Fan, Yuhong Zhao, Hua Hou, Li Wu. ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 24-30. |
[13] | Nattakan Kanjana, Wasan Maiaugree, Phitsanu Poolcharuansin, Paveena Laokul. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres [J]. J. Mater. Sci. Technol., 2020, 48(0): 105-113. |
[14] | S.C. Han, L.H. Wu, C.Y. Jiang, N. Li, C.L. Jia, P. Xue, H. Zhang, H.B. Zhao, D.R. Ni, B.L. Xiao, Z.Y. Ma. Achieving a strong polypropylene/aluminum alloy friction spot joint via a surface laser processing pretreatment [J]. J. Mater. Sci. Technol., 2020, 50(0): 103-114. |
[15] | Chaoyi Yan, Jianwen Huang, Chunyang Wu, Yaoyao Li, Yuchuan Tan, Luying Zhang, Yinghui Sun, Xiaona Huang, Jie Xiong. In-situ formed NiS/Ni coupled interface for efficient oxygen evolution and hydrogen evolution [J]. J. Mater. Sci. Technol., 2020, 42(0): 10-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||