J. Mater. Sci. Technol. ›› 2021, Vol. 88: 143-157.DOI: 10.1016/j.jmst.2021.01.071
Previous Articles Next Articles
Bin Liua, Juanli Zhaoa, Yuchen Liua, Jianqi Xib, Qian Lia, Huimin Xiangc, Yanchun Zhouc,*()
Received:
2020-11-11
Revised:
2021-01-03
Accepted:
2021-01-14
Published:
2021-03-19
Online:
2021-03-19
Contact:
Yanchun Zhou
About author:
*E-mail address: yczhou@alum.imr.ac.cn (Y. Zhou).Bin Liu, Juanli Zhao, Yuchen Liu, Jianqi Xi, Qian Li, Huimin Xiang, Yanchun Zhou. Application of high-throughput first-principles calculations in ceramic innovation[J]. J. Mater. Sci. Technol., 2021, 88: 143-157.
Fig. 5. Calculated and experimental thermal conductivities (in W/(m K)) of some promising TBCs materials [38,[51], [52], [53], [54], [55], [56], [57], [58]].
Fig. 6. (a) The crystal structure of ABO3 perovskite; (b) workflow of automated calculations and (c) Pugh's ratio versus the minimum thermal conductivity of 190 ABO3 perovskites [27].
Fig. 8. (a) The theoretical thermal conductivities of BaWO4 and (b) its tensile and shear stress-strain relation. The inset shows the partial contribution of acoustic phonon branches [26,66].
Fig. 9. (a) Contour maps of the theoretical minimum thermal conductivity for A2B2O7; (b) the contribution scores of all candidate feature descriptors and (c) comparison between LASSO predicted and DFT calculated minimum thermal conductivities for A2B2O7 [17].
Fig. 10. Schematic flowchart showing the general procedure of battery materials search and screening using a DFT-based high-throughput computational approach [7].
Fig. 12. (a) Chemical potential limitation of Sr, Ti and O; (b) chemical potential diagram of Sr-Ti-O, where SrTiO3 is stable in the quadrangle ABCD area [78].
Defect reactions | Reaction enthalpies |
---|---|
Stoichiometric SrTiO3 | |
$0\leftrightarrow V_{Sr}^{2-}+V_{Ti}^{4-}+3V_{O}^{2+}+SrTi{{O}_{3}}$ | 1.64 eV/defect |
SrO-rich: | |
$SrO+\frac{1}{2}Ti_{Ti}^{0}+\frac{1}{2}O_{O}^{0}\leftrightarrow \frac{1}{2}SrTi{{O}_{3}}+\frac{1}{2}V_{O}^{2+}+\frac{1}{2}Sr_{Ti}^{2-}$ | 2.89 eV |
TiO2-rich: | |
$Ti{{O}_{2}}+\frac{2}{3}Sr_{Sr}^{0}\leftrightarrow \frac{2}{3}SrTi{{O}_{3}}+\frac{1}{3}Ti_{Sr}^{2+}+\frac{1}{3}V_{Sr}^{2-}$ | 1.90 eV |
$Ti{{O}_{2}}+Sr_{Sr}^{0}+O_{O}^{0}\leftrightarrow SrTi{{O}_{3}}+V_{Sr}^{2-}+V_{O}^{2+}$ | 1.85 eV |
Table 1 Defect reaction and reaction enthalpies in SrTiO3 [78].
Defect reactions | Reaction enthalpies |
---|---|
Stoichiometric SrTiO3 | |
$0\leftrightarrow V_{Sr}^{2-}+V_{Ti}^{4-}+3V_{O}^{2+}+SrTi{{O}_{3}}$ | 1.64 eV/defect |
SrO-rich: | |
$SrO+\frac{1}{2}Ti_{Ti}^{0}+\frac{1}{2}O_{O}^{0}\leftrightarrow \frac{1}{2}SrTi{{O}_{3}}+\frac{1}{2}V_{O}^{2+}+\frac{1}{2}Sr_{Ti}^{2-}$ | 2.89 eV |
TiO2-rich: | |
$Ti{{O}_{2}}+\frac{2}{3}Sr_{Sr}^{0}\leftrightarrow \frac{2}{3}SrTi{{O}_{3}}+\frac{1}{3}Ti_{Sr}^{2+}+\frac{1}{3}V_{Sr}^{2-}$ | 1.90 eV |
$Ti{{O}_{2}}+Sr_{Sr}^{0}+O_{O}^{0}\leftrightarrow SrTi{{O}_{3}}+V_{Sr}^{2-}+V_{O}^{2+}$ | 1.85 eV |
Fig. 13. (a) Configuration of the Σ3 (112) [$\bar{1}10$] tilt GB (O: red, Ti: grey and Sr: green; the numbers indicate the layer number for VO); (b) the segregation, bonding (Eb) and relaxation (Er) energies; (c) segregation energies and migration barriers for oxygen vacancies [79].
Fig. 14. (a) Oxygen chemical potential dependent formation energies of VO in Th1-xUxO2. The oxygen partial pressures from 10-20 to 1?atm at 1000?K and 300?K are indicated by areas A and B, respectively; (b) variation of oxygen formation energies (Ef) and migration energy barriers (Em) with composition in Th1-xUxO2 [90].
Fig. 16. (a) Variation in effective charges of primary knock-on atoms with time, (b) comparison of Eds obtained by AIMD and MD, and (c) threshold displacement energies (Ed) versus partial-charge transfer at the energy peaks (NPCT) [114].
Fig. 17. Snapshots of atomic configuration for the solid-salt interaction process on C-terminated SiC(001) surface at 2000?K. (a) and (b) the starting and intermediate configurations for the reaction of salt-surface, (c) and (d) the final configurations for the reaction of salt-surface with additional four and eight F atoms, respectively. The yellow and grey circles are the Si and C atoms in SiC slab, respectively. The green circles denote the Li atom, the dark blue circles are the F atoms, and the light blue circles represent the Be atoms. The black circles are the disordered carbon atoms and the red ones are the disordered silicon atoms [127].
[1] |
R.J. Maurer, C. Freysoldt, A.M. Reilly, J.G. Brandenburg, O.T. Hofmann, T. Björkman, S. Lebègue, A. Tkatchenko, Annu. Rev. Mater. Res. 49 (2019) 1-30.
DOI URL |
[2] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[3] |
J.P. Geng, K.B.C. Tan, G.R. Liu, J. Prosthet. Dent. 85 (2001) 585-598.
PMID |
[4] |
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14 (2002) 2717-2744.
DOI URL |
[5] |
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
DOI URL |
[6] |
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21 (2009), 395502.
DOI URL |
[7] |
H. Chen, G. Hautier, A. Jain, C. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, Y. Tang, G. Ceder, Chem. Mater. 24 (2012) 2009-2016.
DOI URL |
[8] |
B.G. Sumpter, R.K. Vasudevan, T. Potok, S.V. Kalinin, npj Comput. Mater 1 (2015) 15008.
DOI URL |
[9] |
J. Wang, Y. Zhou, Annu. Rev. Mater. Res. 39 (2009) 415-443.
DOI URL |
[10] |
Y. Liu, B. Liu, H. Xiang, Y. Zhou, H. Nian, H. Chen, G. Yang, Y. Gao, J. Am. Ceram. Soc. 101 (2018) 3527-3540.
DOI URL |
[11] | D.R. Clarke, M. Oechsner, N.P. Padture, MRS Bull. 37 (2012) 891-898. |
[12] |
L. Chen, Y. Jiang, X. Chong, J. Feng, J. Am. Ceram. Soc. 101 (2018) 1266-1278.
DOI URL |
[13] |
C. Oses, C. Toher, S. Curtarolo, Nat. Rev. Mater. 5 (2020) 295-305.
DOI URL |
[14] |
S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito O. Levy, Nat. Mater. 12 (2013) 191-201.
DOI PMID |
[15] |
A.A. Emery, J.E. Saal, S. Kirklin, V.I. Hegde, C. Wolverton, Chem. Mater. 28 (2016) 5621-5634.
DOI URL |
[16] |
Y. Guo, Q. Luo, B. Liu, Q. Li, Scr. Mater. 178 (2020) 422-427.
DOI URL |
[17] |
L. Yang, C. Zhu, Y. Sheng, H. Nian, Q. Li, P. Song, W. Lu, J. Yang, B. Liu, J. Am. Ceram. Soc. 102 (2019) 2830-2840.
DOI |
[18] | Y. Lyu, Y. Liu, Z.E. Yu, N. Su, Y. Liu, W. Li, Q. Li, B. Guo, B. Liu, Sustain. Mater. Technol. 21 (2019), e00098. |
[19] |
E.O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, A. Aspuru-Guzik, Annu. Rev. Mater. Res. 45 (2015) 195-216.
DOI URL |
[20] |
K. Mitra, Int. Mater. Rev. 53 (2008) 275-297.
DOI URL |
[21] |
T. Bligaard, M.P. Andersson, K.W. Jacobsen, H.L. Skriver, C.H. Christensen, J.K. Nørskov, MRS Bull. 31 (2006) 986-990.
DOI URL |
[22] | F. Karlsruhe, Inorganic Crystal Structure Database, 2021 http://icsd.fizkarlsruhe.de/icsd/ . |
[23] |
G. Hautier, C.C. Fischer, A. Jain, T. Mueller, G. Ceder, Chem. Mater. 22 (2010) 3762-3767.
DOI URL |
[24] |
A. Jain, G. Hautier, C.J. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder, Comput. Mater. Sci. 50 (2011) 2295-2310.
DOI URL |
[25] |
B. Liu, J. Wang, J. Zhang, J. Wang, F. Li, Y. Zhou, Appl. Phys. Lett. 94 (2009),181906.
DOI URL |
[26] |
Y. Liu, D. Jia, Y. Zhou, J. Zhao, Y. Zhou, Q. Li, B. Liu, J. Materiomics 6 (2020) 702-711.
DOI URL |
[27] |
Y. Liu, V.R. Cooper, B. Wang, H. Xiang, Q. Li, Y. Gao, J. Yang, Y. Zhou, B. Liu, Mater. Res. Lett. 7 (2019) 145-151.
DOI URL |
[28] |
J.E. Saal, A.O. Oliynyk, B. Meredig, Annu. Rev. Mater. Res. 50 (2020) 49-69.
DOI URL |
[29] |
K. Rajan, Annu. Rev. Mater. Res. 45 (2015) 153-169.
DOI URL |
[30] |
R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin, M.A. Blood-Forsythe, H.S. Chae, M. Einzinger, D.G. Ha, T. Wu, G. Markopoulos, S. Jeon, H. Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S.I. Hong, M. Baldo, R.P. Adams, A. Aspuru-Guzik, Nat. Mater. 15 (2016) 1120-1127.
DOI PMID |
[31] |
B. Meredig, A. Agrawal, S. Kirklin, J.E. Saal, J.W. Doak, A. Thompson, K. Zhang, A. Choudhary, C. Wolverton, Phys. Rev. B 89 (2014), 094104.
DOI URL |
[32] |
B.J. Bucior, N.S. Bobbitt, T. Islamoglu, S. Goswami, A. Gopalan, T. Yildirim, O.K. Farha, N. Bagheri, R.Q. Snurr, Mol. Syst. Des. Eng. 4 (2019) 162-174.
DOI URL |
[33] |
Y. lwasaki, R. Sawada, V. Stanev, M. Ishida, A. Kirihara, Y. Omori, H. Someya, I. Takeuchi, E. Saitoh, S. Yorozu, npj Comput. Mater 5 (2019) 103.
DOI URL |
[34] |
V. Milman, M.C. Warren, J. Phys. Condens. Matter 13 (2001) 241-251.
DOI URL |
[35] | W. Voigt, Leipzig, 1928, pp. 716-761. |
[36] | A. Reuss, J. Appl. Math. Mech. 9 (1929) 49-58. |
[37] |
R. Hill, Proc. Phys. Soc. London Sect. A 65 (1952) 349-355.
DOI URL |
[38] |
B. Liu, Y. Liu, C. Zhu, H. Xiang, H. Chen, L. Sun, Y. Gao, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 833-851.
DOI |
[39] |
X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19 (2011) 1275-1281.
DOI URL |
[40] |
Y. Bai, N. Srikanth, C.K. Chua, K. Zhou, Crit. Rev. Solid State Mater. Sci. 44 (2019) 56-107.
DOI URL |
[41] |
T. Liao, J. Wang, Y. Zhou, Phys. Rev. B 73 (2006), 214109.
DOI URL |
[42] |
Y. Zhou, H. Xiang, F.Z. Dai, Z. Feng, Mater. Res. Lett. 5 (2017) 440-448.
DOI URL |
[43] |
F. Li, C. Hu, J. Wang, B. Liu, J. Wang, Y. Zhou, J. Am. Ceram. Soc. 92 (2009) 476-480.
DOI URL |
[44] |
W.Y. Ching, Y. Mo, S. Aryal, P. Rulis, J. Am. Ceram. Soc. 96 (2013) 2292-2297.
DOI URL |
[45] |
W. Zhang, Y. Liu, Y. Zhou, W.Y. Ching, Q. Li, W. Li, J. Yang, B. Liu, J. Mater. Sci. Technol. 40 (2020) 64-71.
DOI |
[46] |
B. Liu, J. Wang, F. Li, Y. Zhou, Acta Mater. 58 (2010) 4369-4377.
DOI URL |
[47] | D.R. Clarke, Surf. Coat. Technol. 163 (2003) 67-74. |
[48] | D.T. Morelli, G.A. Slack, Springer NewYork, 2006, pp. 37-68. |
[49] |
A. Togo, I. Tanaka, Scr. Mater. 108 (2015) 1-5.
DOI URL |
[50] |
W. Li, J. Carrete, N.A. Katcho, N. Mingo, Comput. Phys. Commun. 185 (2014) 1747-1758.
DOI URL |
[51] |
A. Du, C. Wan, Z. Qu, W. Pan, J. Am. Ceram. Soc. 92 (2009) 2687-2692.
DOI URL |
[52] |
J. Feng, B. Xiao, R. Zhou, W. Pan, Scr. Mater. 68 (2013) 727-730.
DOI URL |
[53] |
J. Feng, B. Xiao, R. Zhou, W. Pan, Scr. Mater. 69 (2013) 401-404.
DOI URL |
[54] | W. Ma, D.E. Mack, R. Va _en, D.Stöver, J. Am. Ceram. Soc. 91 (2008) 2630-2635. |
[55] | Z. Tian, L. Zheng, Z. Li, J. Lia, J. Wang, J. Eur, Ceram. Soc. 36 (2016) 2813-2823. |
[56] |
Z. Tian, L. Zheng, J. Wang, P. Wan, J. Li, J. Wang, J. Eur. Ceram. Soc. 36 (2016) 189-202.
DOI URL |
[57] |
X. Wang, H. Xiang, X. Sun, J. Liu, F. Hou, Y. Zhou, J. Mater. Res. 29 (2014) 2673-2681.
DOI URL |
[58] |
Y. Zhou, H. Xiang, X. Lu, Z. Feng, Z. Li, J. Adv. Ceram. 4 (2015) 83-93.
DOI URL |
[59] | D.R. Clarke, S.R. Phillpot, Mater. Today 8 (2005) 22-29. |
[60] |
Y. Li, J. Wang, J. Wang, J. Mater. Res. 30 (2015) 3729-3739.
DOI URL |
[61] |
Y. Li, Y. Luo, Z. Tian, J. Wang, J. Wang, J. Eur. Ceram. Soc. 38 (2018) 3539-3546.
DOI URL |
[62] |
B. Liu, J. Wang, Y. Zhou, T. Liao, F. Li, Acta Mater. 55 (2007) 2949-2957.
DOI URL |
[63] |
Y. Zhou, B. Liu, J. Eur. Ceram. Soc. 33 (2013) 2817-2821.
DOI URL |
[64] |
J. Feng, B. Xiao, R. Zhou, W. Pan, Acta Mater. 61 (2013) 7364-7383.
DOI URL |
[65] |
W. Ge, H. Zhang, J. Wang, J. Liu, X. Xu, X. Hu, M. Jiang, D. Ran, S. Sun, H. Xia, R.I. Boughton, J. Appl. Phys. 98 (2005), 013542.
DOI URL |
[66] |
D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, H. Zhang, Mater. Sci. Eng. B 130 (2006) 206-209.
DOI URL |
[67] |
X. Cao, R. Vassen, D. Stöever, J. Eur. Ceram. Soc. 24 (2004) 1-10.
DOI URL |
[68] |
L. Traheya, F.R. Brushetta, N.P. Balsaraa, G. Cedera, L. Cheng, Y.M. Chiang, N.T. Hahna, B.J. Ingram, S.D. Minteer, J.S. Moore, K.T. Mueller, L.F. Nazar, K.A. Persson, D.J. Siegel, K. Xu, K.R. Zavadil, V. Srinivasan, G.W. Crabtree, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 12550-12557.
DOI PMID |
[69] |
G. Hautier, A. Jain, H. Chen, C. Moore, S.P. Ong, G. Ceder, J. Mater. Chem. 21 (2011) 17147-17153.
DOI URL |
[70] | G. Ceder, G. Hautier, A. Jain, S.P. Ong, MRS Bull. 37 (2012) b1-b2. |
[71] |
Z. Zhang, D. Wu, X. Zhang, X. Zhao, H. Zhang, F. Ding, Z. Xie, Z. Zhou, J. Mater. Chem. A 5 (2017) 12752-12756.
DOI URL |
[72] |
J. Su, Y. Pei, Z. Yang, X. Wang, Comput. Mater. Sci. 98 (2015) 304-310.
DOI URL |
[73] |
G. Ceder, MRS Bull. 35 (2011) 693-701.
DOI URL |
[74] | H. Chen, G. Hautier, G. Ceder, J. Am. Ceram. Soc. 134 (2012) 19619-19627. |
[75] |
H. Chen, Q. Hao, O. Zivkovic, G. Hautier, L.S. Du, Y. Tang, Y.Y. Hu, X. Ma, C.P. Grey, G. Ceder, Chem. Mater. 25 (2013) 2777-2786.
DOI URL |
[76] |
M. Nishijima, T. Ootani, Y. Kamimura, T. Sueki, S. Esaki, S. Murai, K. Fujita, K. Tanaka, K. Ohira, Y. Koyama, I. Tanaka, Nat. Commun. 5 (2014) 4553.
DOI PMID |
[77] | H.R. Hajiyani, U. Preiss, R. Drautz, T. Hammerschmidt, Modell. Simul. Mater.Sci. Eng. 21 (2013), 074004. |
[78] |
B. Liu, V.R. Cooper, H. Xu, H. Xiao, Y. Zhang, W.J. Weber, Phys. Chem. Chem. Phys. 16 (2014) 15590-15596.
DOI URL |
[79] |
B. Liu, V.R. Cooper, Y. Zhang, W.J. Weber, Acta Mater. 90 (2015) 394-399.
DOI URL |
[80] |
J. Xi, B. Liu, H. Xu, Y. Zhang, W.J. Weber, J. Nucl. Mater 499 (2018) 377-382.
DOI URL |
[81] |
Y. Liu, Y. Zhou, D. Jia, J. Zhao, B. Wang, Y. Cui, Q. Li, B. Liu, J. Mater. Sci. Technol. 42 (2020) 212-219.
DOI URL |
[82] |
J. Zhao, Y. Liu, Y. Fan, W. Zhang, C. Zhang, G. Yang, H. Chen, B. Liu, J. Mater. Sci. Technol. 73 (2021) 23-30.
DOI URL |
[83] |
G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89 (2001) 5243-5275.
DOI URL |
[84] |
A. Kosola, M. Putkonen, L.S. Johansson, L. Niinistö, Appl. Surf. Sci. 211 (2003) 102-112.
DOI URL |
[85] |
H. Hojo, T. Mizoguchi, H. Ohta, S.D. Findlay, N. Shibata, T. Yamamoto, Y. Ikuhara, Nano Lett. 10 (2010) 4668-4672.
DOI URL |
[86] |
K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, R. Funahashi, Annu. Rev. Mater. Res. 40 (2010) 363-394.
DOI URL |
[87] |
J. Xi, B. Liu, F. Yuan, Y. Zhang, W.J. Weber, Scr. Mater. 139 (2017) 1-4.
DOI URL |
[88] |
D.S. Aidhy, B. Liu, Y. Zhang, W.J. Weber, J. Phys. Chem. C 118 (2014) 30139-30144.
DOI URL |
[89] |
S. Hubert, J. Purans, G. Heisbourg, P. Moisy, N. Dacheux, Inorg. Chem. 45 (2006) 3887-3894.
PMID |
[90] |
B. Liu, D.S. Aidhy, Y. Zhang, W.J. Weber, Phys. Chem. Chem. Phys. 16 (2014) 25461-25467.
DOI PMID |
[91] |
Y. Zhang, B. Liu, J. Wang, Sci. Rep. 5 (2015) 18098.
DOI URL |
[92] |
Y. Zhang, B. Liu, J. Wang, J. Wang, Acta Mater. 111 (2016) 232-241.
DOI URL |
[93] |
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6 (2015) 8485.
DOI URL |
[94] |
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, J. Luo, Sci. Rep. 6 (2016) 37946.
DOI URL |
[95] |
X. Yan, L. Constantin, Y. Lu, J.F Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 101 (2018) 4486-4491.
DOI URL |
[96] |
T. Jin, X. Sang, R.R. Unocic, R.T. Kinch, X. Liu, J. Hu, H. Liu, S. Dai, Adv. Mater 30(2018), 1707512.
DOI URL |
[97] |
R.Z. Zhang, F. Gucci, H. Zhu, K. Chen, M.J. Reece, Inorg. Chem. 57 (2018) 13027.
DOI URL |
[98] |
J. Gild, J. Braun, K. Kaufmann, E. Marin, T. Harrington, P. Hopkins, K. Vecchio, J. Luo, J. Materiomics 5 (2019) 337-343.
DOI URL |
[99] |
X. Ren, Z. Tian, J. Zhang, J. Wang, Scr. Mater. 168 (2019) 47-50.
DOI URL |
[100] |
Z. Zhao, H. Xiang, F.Z. Dai, Z. Peng, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 2227-2231.
DOI URL |
[101] |
F. Li, L. Zhou, J.X. Liu, Y. Liang, G.J. Zhang, J. Adv. Ceram. 8 (2019) 576-582.
DOI URL |
[102] |
A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65 (1990) 353-356.
PMID |
[103] |
L. Vitos, Phys. Rev. B 64 (2001), 014107.
DOI URL |
[104] |
B. Ye, T. Wen, M.C. Nguyen, L. Hao, C.Z. Wang, Y. Chu, Acta Mater. 170 (2019) 15-23.
DOI URL |
[105] |
B. Ye, T. Wen, M.C. Nguyen, L. Hao, C.Z. Wang, Y. Chu, J. Am. Ceram. Soc. 102 (2019) 4344-4352.
DOI URL |
[106] |
Q. Zhang, J. Zhang, N. Li, W. Chen, J. Appl. Phys. 126 (2019), 025101.
DOI URL |
[107] |
Y.P. Wang, G.Y. Gan, W. Wang, Y. Yang, B.Y. Tang, Phys. Status Solidi B 255 (2018), 1800011.
DOI URL |
[108] |
Y. Yang, W. Wang, G.Y. Gan, X.F. Shi, B.Y. Tang, Physica B Condens. Matter 550 (2018) 163-170.
DOI URL |
[109] |
A.J. Wright, Q. Wang, C. Huang, A. Nieto, R. Chen, J. Luo, J. Eur. Ceram. Soc. 40 (2020) 2120-2129.
DOI URL |
[110] |
Y. Liu, D. Jia, Y. Zhou, Y. Zhou, J. Zhao, H. Nian, B. Liu, J. Eur. Ceram. Soc. 40 (2020) 6272-6277.
DOI URL |
[111] |
A.J. Wright, J. Luo, J. Mater. Sci. 55 (2020) 9812-9827.
DOI URL |
[112] |
G. Anand, A.P. Wynn, C.M. Handley, C.L. Freeman, Acta Mater. 146 (2018) 119-125.
DOI URL |
[113] |
G. Anand, R. Goodall, C.L. Freeman, Scr. Mater. 124 (2016) 90-94.
DOI URL |
[114] |
B. Liu, H. Xiao, Y. Zhang, D.S. Aidhy, W.J. Weber, J. Phys. Condens. Matter 25 (2013), 485003.
DOI URL |
[115] |
X. Wang, H. Xiao, X. Zu, Y. Zhang, W.J. Weber, J. Mater. Chem. C 1 (2013) 1665-1673.
DOI URL |
[116] |
F. Gao, H. Xiao, X. Zu, M. Posselt, W.J. Weber, Phys. Rev. Lett. 103 (2009), 027405.
DOI URL |
[117] |
G. Lucas, L. Pizzagalli, Phys. Rev. B 72 (2005), 161202.
DOI URL |
[118] |
H. Xiao, Y. Zhang, W.J. Weber, Phys. Rev. B 86 (2012), 054109.
DOI URL |
[119] |
B. Liu, H. Xiao, Y. Zhang, W.J. Weber, J. Phys. Condens. Matter 25 (2013), 395004.
DOI URL |
[120] |
B. Liu, B. Petersen, Y. Zhang, J. Wang, W.J. Weber, J. Am. Ceram. Soc. 99 (2016) 2693-2698.
DOI URL |
[121] |
B. Liu, F. Yuan, K. Jin, Y. Zhang, W.J. Weber, J. Phys. Condens. Matter 27 (2015), 435006.
DOI URL |
[122] |
J. Xi, B. Liu, Y. Zhang, W.J. Weber, J. Appl. Phys. 123 (2018), 045904.
DOI URL |
[123] |
B.A. Petersen, B. Liu, W.J. Weber, Y. Zhang, J. Nucl. Mater 486 (2017) 122-128.
DOI URL |
[124] | T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C. van Duin, npj Comput. Mater 2 (2016) 15011. |
[125] |
A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105 (2001) 9396-9409.
DOI URL |
[126] |
Y.K. Shin, T.R. Shan, T. Liang, M.J. Noordhoek, S.B. Sinnott, A.C. T. van Duin, S.R. Phillpot, MRS Bull. 37 (2012) 504-512.
DOI URL |
[127] |
J. Xi, H. Jiang, C. Liu, D. Morgan, I. Szlufarska, Corros. Sci. 146 (2019) 1-9.
DOI URL |
[128] |
W. Xue, X. Yang, J. Qiu, H. Liu, B. Zhao, H. Xia, X. Zhou, P. Huai, H. Liu, J. Wang, Corros. Sci. 114 (2017) 96-101.
DOI URL |
[129] |
J.J. Lee, S.S. Raiman, Y. Katoh, T. Koyanagi, C.I. Contescu, X. Hu, Y. Yang, J. Nucl. Mater. 524 (2019) 119-134.
DOI |
[130] |
W.A. Adeagbo, N.L. Doltsinis, K. Klevakina, J. Renner, ChemPhysChem 9 (2008) 994-1002.
DOI PMID |
[131] | S. Hamadza, S.T. Bromley, Chem. Commun. 35 (2008) 4156-4158. |
[132] |
A. Motta, M.P. Gaigeot, D. Costa, J. Phys. Chem. C 116 (2012) 12514-12524.
DOI URL |
[133] |
J. Xi, C. Liu, D. Morgan, I. Szlufarska, J. Phys. Chem. C 124 (2020) 9394-9400.
DOI URL |
[134] |
G. Cicero, A. Catellani, G. Galli, Phys. Rev. Lett. 93 (2004), 016102.
DOI URL |
[135] |
G. Cicero, J.C. Grossman, A. Catellani, G. Galli, J. Am. Chem. Soc. 127 (2005) 6830-6835.
DOI URL |
[136] |
L.C. Ciacchi, M.C. Payne, Phys. Rev. Lett. 95 (2005), 196101.
DOI URL |
[1] | Fu-Zhi Dai, Yinjie Sun, Bo Wen, Huimin Xiang, Yanchun Zhou. Temperature Dependent Thermal and Elastic Properties of High Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: Molecular Dynamics Simulation by Deep Learning Potential [J]. J. Mater. Sci. Technol., 2021, 72(0): 8-15. |
[2] | Ziqi Guan, Jing Bai, Jianglong Gu, Xinzeng Liang, Die Liu, Xinjun Jiang, Runkai Huang, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 103-111. |
[3] | L.T. Zhang, Y.J. Duan, T. Wada, H. Kato, J.M. Pelletier, D. Crespo, E. Pineda, J.C. Qiao. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass [J]. J. Mater. Sci. Technol., 2021, 83(0): 248-255. |
[4] | Yang Yu, Yu Zhao, Yu-Long Qiao, Yu Feng, Wei-Li Li, Wei-Dong Fei. Defect engineering of rutile TiO2 ceramics: Route to high voltage stability of colossal permittivity [J]. J. Mater. Sci. Technol., 2021, 84(0): 10-15. |
[5] | Ning Liu, Heng Ma, Lu Wang, Yan Zhao, Zhumabay Bakenov, Xin Wang. Dealloying-derived nanoporous deficient titanium oxide as high-performance bifunctional sulfur host-catalysis material in lithium-sulfur battery [J]. J. Mater. Sci. Technol., 2021, 84(0): 124-132. |
[6] | Ruihua Qiao, Junming Gou, Tianzi Yang, Yiqun Zhang, Feng Liu, Shanshan Hu, Tianyu Ma. Enhanced damping capacity of ferromagnetic Fe-Ga alloys by introducing structural defects [J]. J. Mater. Sci. Technol., 2021, 84(0): 173-181. |
[7] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[8] | Yixuan Lv, Yijun Zhang, Le Shi, Jian-Wen Shi, Jun Li, Zhihui Li, Xin Ji, Dandan Ma, Yonghong Cheng, Chunming Niu. Role of oxygen vacancy in rare-earth-free LiCa3Mg(VO4)3 phosphor: Enhancing photoluminescence by heat-treatment in oxygen flow [J]. J. Mater. Sci. Technol., 2021, 79(0): 123-132. |
[9] | Xiangchen Kong, Huiming Huang, Zhaoyang Li, Yanqin Liang, Zhenguo Li, Shengli Zhu. Facile synthesis of defected TiO2-x (B) nanosheet/graphene oxide hybrids with high photocatalytic H2 activity [J]. J. Mater. Sci. Technol., 2021, 80(0): 171-178. |
[10] | Tong Yang, Yi Kong, Jiangbo Lu, Zhenjun Zhang, Mingjun Yang, Ning Yan, Kai Li, Yong Du. Self-accommodated defect structures modifying the growth of Laves phase [J]. J. Mater. Sci. Technol., 2021, 62(0): 203-213. |
[11] | Shuaihang Qiu, Mingliang Li, Gang Shao, Hailong Wang, Jinpeng Zhu, Wen Liu, Bingbing Fan, Hongliang Xu, Hongxia Lu, Yanchun Zhou, Rui Zhang. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting [J]. J. Mater. Sci. Technol., 2021, 65(0): 82-88. |
[12] | Shuang Zhang, Fei Wang, Ping Huang. Enhanced Hall-Petch strengthening in graphene/Cu nanocomposites [J]. J. Mater. Sci. Technol., 2021, 87(0): 176-183. |
[13] | Yan Ma, Muxin Yang, Fuping Yuan, Xiaolei Wu. Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 82(0): 122-134. |
[14] | Hua Zhang, Jia Zhuang, Xingchong Liu, Zhu Ma, Heng Guo, Ronghong Zheng, Shuangshuang Zhao, Fu Zhang, Zheng Xiao, Hanyu Wang, Haimin Li. Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77% [J]. J. Mater. Sci. Technol., 2021, 82(0): 40-46. |
[15] | Chang-Yu Hung, Yu Bai, Nobuhiro Tsuji, Mitsuhiro Murayama. Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel: Advanced TEM investigations [J]. J. Mater. Sci. Technol., 2021, 86(0): 192-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||