J. Mater. Sci. Technol. ›› 2021, Vol. 87: 101-107.DOI: 10.1016/j.jmst.2021.03.004
• Research Article • Previous Articles Next Articles
Conghui Zhang*(), Xiangkang Zeng, Jiapeng Cheng, Yaomian Wang
Received:
2020-06-15
Revised:
2020-10-29
Accepted:
2020-12-15
Published:
2021-10-10
Online:
2021-03-13
Contact:
Conghui Zhang
About author:
* E-mail address: zhangconghui@xauat.edu.cn (C. Zhang).Conghui Zhang, Xiangkang Zeng, Jiapeng Cheng, Yaomian Wang. Fatigue life improvement and grain growth of gradient nanostructured industrial zirconium during high cycle fatigue[J]. J. Mater. Sci. Technol., 2021, 87: 101-107.
Zr | Fe + Cr | C | N | H | O |
---|---|---|---|---|---|
≥99.48 | 0.25 | 0.08 | 0.05 | 0.012 | 0.13 |
Table 1 Chemical composition of Zr-3 alloy (wt.%).
Zr | Fe + Cr | C | N | H | O |
---|---|---|---|---|---|
≥99.48 | 0.25 | 0.08 | 0.05 | 0.012 | 0.13 |
Fig. 7. Microstructure evolution of nanocrystals under stress amplitude of 204 MPa: (a) 1 × 104 cycles, (b) 1 × 105 cycles, (c) 3 × 105 cycles, (d) 5 × 105 cycles, (e) 1 × 106 cycles, (f) 2 × 106 cycles.
Fig. 8. Inverse pole figure of surface gradient nanostructure of unloaded and 1 × 106 cycles fatigue loaded samples: (a) unloaded sample; (b) 1 × 106 cycles fatigue loaded sample.
Fig. 9. Storage energy distribution of surface gradient nanostructure of unloaded and 1 × 106 cycles fatigue loaded samples: (a) unloaded sample, (b) 1 × 106 cycles fatigue loaded sample.
Fig. 10. Schmid factor distribution of surface gradient nanostructure of unloaded and 1 × 106 cycles fatigue loaded samples: (a, c) unloaded sample, (b, d) 1 × 106 cycles fatigue loaded sample.
[1] |
H. Mughrabi, Proc. Eng. 2 (2010) 3-26.
DOI URL |
[2] |
K.S. Chan, Int. J. Fatigue 32 (2010) 1428-1447.
DOI URL |
[3] | H.S. Ho, D.L. Li, E.L. Zhang, P.H. Niu, Adv. Mater. Sci. Eng. 2018 (2018) 1-11. |
[4] | T.O. Olugbade, J. Lu, Nano Mater. Sci. 2 (2020) 3-31. |
[5] |
K. Dai, L. Shaw, Mater. Sci. Eng. A 463 (2007) 46-53.
DOI URL |
[6] |
K. Lu, J. Lu, J. Mater. Sci. Technol. 15 (1999) 193-197.
DOI URL |
[7] |
K. Lu, Mater. Sci. Eng. R: Rep. 16 (1996) 161-221.
DOI URL |
[8] |
S.R. Agnew, B.R. Elliott, C.J. Youngdahl, K.J. Hemker, J.R. Weertman, Mater. Sci. Eng. A 285 (2000) 391-396.
DOI URL |
[9] |
A.S. Khan, Y.S. Suh, X. Chen, L. Takacs, H. Zhang, Int. J. Plast. 22 (2006) 195-209.
DOI URL |
[10] |
Y. Yang, B. Imasogie, G.J. Fan, P.K. Liaw, W.O. Soboyejo, Metall. Mater. Trans. A 39 (2008) 1145-1156.
DOI URL |
[11] |
Y.M. Wang, K. Wang, D. Pan, K. Lu, K.J. Hemker, E. Ma, Scr. Mater. 48 (2003) 1581-1586.
DOI URL |
[12] |
K. Dai, L. Shaw, Int. J. Fatigue 30 (2008) 1398-1408.
DOI URL |
[13] | J.J. Xie, X.L. Wu, Y.S. Hong, Adv. Mater. Res. 33-37 (2008) 925-930. |
[14] |
T. Roland, D. Retraint, K. Lu, J. Lu, Scr. Mater. 54 (2006) 1949-1954.
DOI URL |
[15] |
Y.S. Zhang, Z. Han, K. Wang, K. Lu, Wear 260 (2006) 942-948.
DOI URL |
[16] |
D.M. Ba, S.N. Ma, F.J. Meng, C.Q. Li, Surf. Coat. Technol. 202 (2007) 254-260.
DOI URL |
[17] |
H.W. Huang, Z.B. Wang, J. Lu, K. Lu, Acta Mater. 87 (2015) 150-160.
DOI URL |
[18] |
L. Yang, N.R. Tao, K. Lu, L. Lu, Scr. Mater. 68 (2013) 801-804.
DOI URL |
[19] | Y.K. Gao, Rare Met. Mater. Eng. 33 (2004) 1000-1002. |
[20] |
C. Xin, Q. Sun, L. Xiao, J. Sun, J. Mater. Sci. 53 (2018) 12492-12503.
DOI URL |
[21] |
X.M. Luo, X.F. Zhu, G.P. Zhang, Nat. Commun. 5 (2014) 3021.
DOI URL |
[22] |
A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater. 51 (2003) 2097-2112.
DOI URL |
[23] |
Y. Huang, S. Sabbaghianrad, A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, T.G. Langdon, Mater. Sci. Eng. A 656 (2016) 55-66.
DOI URL |
[24] |
W. Chen, Z.S. You, N.R. Tao, L. Lu, IOP Conf. Ser. Mater. Sci. Eng. 89 (2015), 012001.
DOI URL |
[25] |
J. Gubicza, N.Q. Chinh, J.L. Lábár, Z. Hegedüs, T.G. Langdon, Mater. Sci. Eng. A 527 (2010) 752-760.
DOI URL |
[26] |
A.J. Detor, C.A. Schuh, J. Mater. Res. 22 (2007) 3233-3248.
DOI URL |
[27] |
K. Zhang, J.R. Weertman, J.A. Eastman, Appl. Phys. Lett. 87 (2005), 061921.
DOI URL |
[28] |
T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331 (2011) 1587-1590.
DOI PMID |
[29] |
G.J. Fan, L.F. Fu, Y.D. Wang, Y. Ren, H. Choo, P.K. Liaw, G.Y. Wang, N.D. Browning, Appl. Phys. Lett. 89 (2006), 101918.
DOI URL |
[30] |
M.J.N.V. Prasad, A.H. Chokshi, Scr. Mater. 67 (2012) 133-136.
DOI URL |
[31] |
F. Sansoz, V. Dupont, Appl. Phys. Lett. 89 (2006), 111901.
DOI URL |
[32] |
L. Li, T. Ungár, Y.D. Wang, J.R. Morris, G. Tichy, J. Lendvai, Y.L. Yang, Y. Ren, H. Choo, P.K. Liaw, Acta Mater. 57 (2009) 4988-5000.
DOI URL |
[33] |
H.A. Padilla, B.L. Boyce, Exp. Mech. 50 (2009) 5-23.
DOI URL |
[34] |
X.H. An, S.D. Wu, Z.G. Wang, Z.F. Zhang, Acta Mater. 74 (2014) 200-214.
DOI URL |
[35] |
S. Cheng, Y. Zhao, Y. Wang, Y. Li, X.L. Wang, P.K. Liaw, E.J. Lavernia, Phys. Rev. Lett. 104 (2010), 255501.
DOI URL |
[36] |
Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Mater. Sci. Eng. R: Rep. 133 (2018) 1-59.
DOI URL |
[37] |
L.P. Kubin, A. Mortensen, Scr. Mater. 48 (2003) 119-125.
DOI URL |
[38] |
Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Mater. Sci. Eng. A 723 (2018) 212-220.
DOI URL |
[39] |
M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527 (2010) 2738-2746.
DOI URL |
[40] |
A. Godfrey, W.Q. Cao, Q. Liu, N. Hansen, Metall. Mater. Trans. A 36 (2005) 2371-2378.
DOI URL |
[41] |
M. Knezevic, M. Zecevic, I.J. Beyerlein, J.F. Bingert, R.J. McCabe, Acta Mater. 88 (2015) 55-73.
DOI URL |
[42] |
X.H. Chen, J. Lu, L. Lu, K. Lu, Scr. Mater. 52 (2005) 1039-1044.
DOI URL |
[43] | Y. Wang, J. Cheng, C. Zhang, Rare Met. Mater. Eng. 48 (2019) 2574-2579. |
[44] |
C. Zhang, G. Song, Y. Wang, M. Zheng, G. Xiao, J. Yang, Mater. Sci. Eng. A 794 (2020), 139831.
DOI URL |
[1] | Yunli Lu, Fenghui Duan, Jie Pan, Yi Li. High-throughput screening of critical size of grain growth in gradient structured nickel [J]. J. Mater. Sci. Technol., 2021, 82(0): 33-39. |
[2] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[3] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[4] | Risheng Pei, Sandra Korte-Kerzel, Talal Al-Samman. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50(0): 257-270. |
[5] | Qinghang Wang, Bin Jiang, Aitao Tang, Jie Fu, Zhongtao Jiang, Haoran Sheng, Dingfei Zhang, Guangsheng Huang, Fusheng Pan. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy [J]. J. Mater. Sci. Technol., 2020, 43(0): 104-118. |
[6] | Zhihong Wu, Hongchao Kou, Nana Chen, Mengqi Zhang, Ke Hua, Jiangkun Fan, Bin Tang, Jinshan Li. Duality of the fatigue behavior and failure mechanism in notched specimens of Ti-7Mo-3Nb-3Cr-3Al alloy [J]. J. Mater. Sci. Technol., 2020, 50(0): 204-214. |
[7] | P.G. Kubendran Amos, Ramanathan Perumal, Michael Selzer, Britta Nestler. Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems [J]. J. Mater. Sci. Technol., 2020, 45(0): 215-229. |
[8] | Jiangguli Peng, Wenbin Liu, Jiangtao Zeng, Liaoying Zheng, Guorong Li, Anthony Rousseau, Alain Gibaud, Abdelhadi Kassiba. Large electromechanical strain at high temperatures of novel <001> textured BiFeGaO3-BaTiO3 based ceramics [J]. J. Mater. Sci. Technol., 2020, 48(0): 92-99. |
[9] | Ying-Jun Gao, Qian-Qian Deng, Zhe-yuan Liu, Zong-Ji Huang, Yi-Xuan Li, Zhi-Rong Luo. Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain: Atomistic and continuum modeling [J]. J. Mater. Sci. Technol., 2020, 49(0): 236-250. |
[10] | G.W. Hu, L.C. Zeng, H. Du, X.W. Liu, Y. Wu, P. Gong, Z.T. Fan, Q. Hu, E.P. George. Tailoring grain growth and solid solution strengthening of single-phase CrCoNi medium-entropy alloys by solute selection [J]. J. Mater. Sci. Technol., 2020, 54(0): 196-205. |
[11] | Xintong Lian, Wenru Sun, Litao Chang, Fang Liu, Xin Xin. Influence of phosphorous on nucleation and growth of grains during solidification in a NiCrFe alloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 134-141. |
[12] | Ying Wu, Jianrong Liu, Hao Wang, Shaoxuan Guan, Rui Yang, Hongfu Xiang. Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure [J]. J. Mater. Sci. Technol., 2018, 34(7): 1189-1195. |
[13] | G.B. Shan, Y.Z. Chen, M.M. Gong, H. Dong, B. Li, F. Liu. Influence of Al2O3 particle pinning on thermal stability of nanocrystalline Fe [J]. J. Mater. Sci. Technol., 2018, 34(4): 599-604. |
[14] | Kwak T.Y., Kim W.J.. Superplastic behavior of an ultrafine-grained Mg-13Zn-1.55Y alloy with a high volume fraction of icosahedral phases prepared by high-ratio differential speed rolling [J]. J. Mater. Sci. Technol., 2017, 33(9): 919-925. |
[15] | Shao Chendong, Lu Fenggui, Wang Xiongfei, Ding Yuming, Li Zhuguo. Microstructure characterization and HCF fracture mode transition for modified 9Cr-1Mo dissimilarly welded joint at different elevated temperatures [J]. J. Mater. Sci. Technol., 2017, 33(12): 1610-1620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||