J. Mater. Sci. Technol. ›› 2021, Vol. 87: 108-119.DOI: 10.1016/j.jmst.2021.01.069
• Research Article • Previous Articles Next Articles
Qing Hana,c,1, Yipeng Lia,c,1, Guang Rana,c,*(), Xinyi Liua,c, Lu Wub, Yang Chena,c, Piheng Chend, Xiaoqiu Yed, Yifan Dinga,c, Xiaoyong Wub
Received:
2020-11-05
Revised:
2021-01-08
Accepted:
2021-01-25
Published:
2021-10-10
Online:
2021-03-19
Contact:
Guang Ran
About author:
* College of Energy, Xiamen University, Xiamen, 361102, China. E-mail address: gran@xmu.edu.cn (G. Ran).Qing Han, Yipeng Li, Guang Ran, Xinyi Liu, Lu Wu, Yang Chen, Piheng Chen, Xiaoqiu Ye, Yifan Ding, Xiaoyong Wu. In-situ TEM observation of the evolution of helium bubbles & dislocation loops and their interaction in Pd during He + irradiation[J]. J. Mater. Sci. Technol., 2021, 87: 108-119.
Fig. 1. Depth profiles of the irradiation damage and injected helium concentration in pure Pd irradiated by 30 keV He+ with a fluence of 1.1 × 1016 He+/cm2 calculated by SRIM program in quick Kinchin-Pease mode.
Thickness of the monitored region (nm) | Injected He+ flux (ions/(cm2 s)) | Total average damage rate (dpa/s) | Final irradiation dose (dpa) | Final injected helium concentration (at.%) | |
---|---|---|---|---|---|
Case I | 50 | 1.65 × 1012 | 4.85 × 10-5 | 0.15 | 0.23 |
Case II | 80 | 1.65 × 1012 | 5.66 × 10-5 | 0.17 | 0.33 |
Case Ⅲ | 85 | 1.65 × 1012 | 5.71 × 10-5 | 0.38 | 0.77 |
Table 1 Experimental parameters of the in-situ 30 keV He+ irradiation at different monitored regions.
Thickness of the monitored region (nm) | Injected He+ flux (ions/(cm2 s)) | Total average damage rate (dpa/s) | Final irradiation dose (dpa) | Final injected helium concentration (at.%) | |
---|---|---|---|---|---|
Case I | 50 | 1.65 × 1012 | 4.85 × 10-5 | 0.15 | 0.23 |
Case II | 80 | 1.65 × 1012 | 5.66 × 10-5 | 0.17 | 0.33 |
Case Ⅲ | 85 | 1.65 × 1012 | 5.71 × 10-5 | 0.38 | 0.77 |
Fig. 2. In-situ bright-field TEM images showing the evolution of dislocation loops and helium bubbles at the monitored region with 80 nm thickness during in-situ 30 keV He+ irradiation at 573 K, the irradiation fluence was: (a) Non-irradiation; (b) 5 × 1014 He+/cm2; (c) 1.2 × 1015 He+/cm2; (d) 2.5 × 1015 He+/cm2; (e) and (f) 5.0 × 1015 He+/cm2. (a-e) TEM images taken using g = 200 and (f) TEM image taken using g=-200 two-beam conditions near [011] zone axis. The scale bar in (a) applied to all micrographs.
Fig. 3. (a) The average size of dislocation loops and helium bubbles as a function of irradiation fluence; (b) The relationship of the volume number density of dislocation loops and irradiation fluence, as well as for helium bubbles. All data were obtained at the monitored region with 80 nm thickness.
Fig. 4. In-situ TEM images showing the evolution of several typical loops marked in Fig. 2(b) at the monitored region with 80 nm thickness, the irradiation fluence was: (a) 5.0 × 1014 He+/cm2; (b) 9.9 × 1014 He+/cm2; (c) 1.2 × 1015 He+/cm2; (d) 2.5 × 1015 He+/cm2; (e) 3.5 × 1015 He+/cm2, and (f) 5.0 × 1015 He+/cm2.
Fig. 5. The schematic illustration of the evolution and corresponding average size of (a) loop k; (b) loop l; and (c) loop m that were marked in Fig. 2 as a function of irradiation fluence, as well as for helium bubbles inside them. The green circles represented the dislocation loops, and the blue solid dots represented helium bubbles. (d) Ratio of the total area of bubbles inside the loop to the loop area as a function of irradiation fluence.
g\b | a2[ | a2[ | a2[ | a2[$10\bar{1}$] | a2[$1\bar{1}0$] | a2[$0\bar{1}1$] | a3[ | a3[$11\bar{1}$] | a3[$1\bar{1}1$] | a3[$\bar{1}$11] |
---|---|---|---|---|---|---|---|---|---|---|
200 | √ | √ | × | √ | √ | × | √ | √ | √ | √ |
$11\bar{1}$ | √ | × | × | √ | × | √ | √ | √ | √ | √ |
$1\bar{1}1$ | × | √ | × | × | √ | √ | √ | √ | √ | √ |
$0\bar{2}2$ | √ | √ | × | √ | √ | √ | × | √ | √ | × |
A1 | A2 | A4 | A1 | A2 | A3 | B1 | B2 | B2 | B1 |
Table 2 |g·b| values used to judge the Burgers vectors of dislocation loops.
g\b | a2[ | a2[ | a2[ | a2[$10\bar{1}$] | a2[$1\bar{1}0$] | a2[$0\bar{1}1$] | a3[ | a3[$11\bar{1}$] | a3[$1\bar{1}1$] | a3[$\bar{1}$11] |
---|---|---|---|---|---|---|---|---|---|---|
200 | √ | √ | × | √ | √ | × | √ | √ | √ | √ |
$11\bar{1}$ | √ | × | × | √ | × | √ | √ | √ | √ | √ |
$1\bar{1}1$ | × | √ | × | × | √ | √ | √ | √ | √ | √ |
$0\bar{2}2$ | √ | √ | × | √ | √ | √ | × | √ | √ | × |
A1 | A2 | A4 | A1 | A2 | A3 | B1 | B2 | B2 | B1 |
Fig. 6. In-situ TEM images of dislocation loops at the monitored region with 80 nm thickness taken at (a) g = 200, (b) g = $11 \bar{1}$, (c) g = $1 \bar{1} 1$, and (d) g = 0 $\bar{2} 2$ near [011] zone axis at the fluence of 2.5 × 1015 He+/cm2. Solid lines represented the visible dislocation loops. Dotted lines represented the invisible loops. The red triangle, green circle, and orange rectangle were the loop family ‘A1’, family ‘B1’, and family ‘B2’, respectively. (e) and (f) showed the sketch of projected loops at g = 200 and g = 0 $\bar{2} 2$ diffraction conditions, respectively.
Fig. 7. In-situ bright-field TEM images showing the characteristics of dislocation loops at the monitored regions with different thicknesses: (a) and (c) 50 nm thickness; (b) and (d) 80 nm thickness. (a) and (b) Irradiation with the fluence of 9.9 × 1014 He+/cm2; (c) and (d) Irradiation with the fluence of 3.5 × 1015 He+/cm2.
Fig. 8. The average size and volume number density of dislocation loops at the monitored regions with 50 nm and 80 nm thickness as a function of irradiation fluence.
Fig. 9. The size of the loops marked letter ‘n’, ‘o’, ‘p’ and ‘q’ at the monitored region with 50 nm thickness in Fig. 7(c) as a function of irradiation fluence.
Fig. 10. In-situ observation of the interaction among dislocation loops at the monitored region with 85 nm thickness at the fluence of (a) 5.0 × 1015 He+/cm2; (b) 6.9 × 1015 He+/cm2; (c) 8.9 × 1015 He+/cm2; and (d) 1.1 × 1016 He+/cm2. The diffraction conditions: (a), (b1), (c) and (d) g = 200; (b2) g = $11 \bar{1}$ ; and (b3) g= $\bar{1}$ $1 \bar{1}$ near the [011] zone axis.
[1] |
T.B. Flanagan, W.A. Oates, Annu. Rev. Mater. Sci. 21 (1991) 269-304.
DOI URL |
[2] |
O. Melikhova, J. Čížek, I. Procházka, Acta Phys. Pol. A 125 (2014) 752-755.
DOI URL |
[3] |
J. Čížek, O. Melikhova, I. Procházka, J. Alloys. Compd. 645 (2015) S312-S315.
DOI URL |
[4] |
S. Thiebaut, B. Decamps, J.M. Pénisson, B. Limacher, A.P. Guégan, J. Nucl. Mater 277 (2000) 217-225.
DOI URL |
[5] |
C.A. Taylor, S. Briggs, G. Greaves, A. Monterrosa, E. Aradi, J.D. Sugar, D.B. Robinson, K. Hattar, J.A. Hinks, Materials 12 (2019) 2618.
DOI URL |
[6] | H. Ullmaier, Nucl. Eng. 24 (1984) 1039-1083. |
[7] |
H. Trinkaus, B.N. Singh, J. Nucl. Mater 323 (2003) 229-242.
DOI URL |
[8] |
F. Carsughi, H. Ullmaier, H. Trinkaus, W. Kesternich, V. Zell, J. Nucl. Mater 212-215 (1994) 336-340.
DOI URL |
[9] |
N. Li, E.G. Fu, H. Wang, J.J. Carter, L. Shao, S.A. Maloy, A. Misra, X. Zhang, J. Nucl. Mater 389 (2009) 233-238.
DOI URL |
[10] |
A. Bhattacharya, E. Meslin, J. Henry, F. Leprêtre, B. Décamps, A. Barbu, J. Nucl. Mater 519 (2019) 30-44.
DOI |
[11] | V. Tebus, L. Rivkis, G. Arutunova, E. Dmitrievsky, V. Kapychev, J. Nucl. Mater 271 (1999) 345-348. |
[12] |
Y. Fukai, N. ōkuma, Phys. Rev. Lett. 73 (1994) 1640-1643.
PMID |
[13] |
Z. Yan, T. Yang, Y. Lin, Y. Lu, Y. Su, S.J. Zinkle, Y. Wang, J. Nucl. Mater 532 (2020), 152045.
DOI URL |
[14] |
O. El-Atwani, K. Hattar, J.A. Hinks, G. Greaves, S.S. Harilal, A. Hassanein, J. Nucl. Mater 458 (2015) 216-223.
DOI URL |
[15] |
H. Chen, Y. Cheng, C. Lin, J. Peng, X. Liang, J. Gao, W. Liu, H. Huang, J. Nucl. Mater 520 (2019) 178-184.
DOI |
[16] |
P.D. Edmondson, C.M. Parish, Y. Zhang, A. Hallén, M.K. Miller, J. Nucl. Mater 434 (2013) 210-216.
DOI URL |
[17] |
F. Zhang, L. Boatner, Y. Zhang, D. Chen, Y. Wang, L. Wang, Materials 12 (2019) 2821.
DOI URL |
[18] |
C. Lu, Z. Lu, R. Xie, C. Liu, L. Wang, J. Nucl. Mater 474 (2016) 65-75.
DOI URL |
[19] |
H. Jiang, X. Wang, I. Szlufarska, Sci. Rep. 7 (2017) 42358.
DOI PMID |
[20] |
P.D. Edmondson, C.M. Parish, Q. Li, M.K. Miller, J. Nucl. Mater 445 (2014) 84-90.
DOI URL |
[21] |
M.S. Staltsov, I.I. Chernov, B.A. Kalin, K.Z. Oo, A.A. Polyansky, O.S. Staltsova, K.Z. Aung, V.M. Chernov, M.M. Potapenko, J. Nucl. Mater 461 (2015) 56-60.
DOI URL |
[22] |
Y. Guo, B. Liu, W. Xie, Q. Luo, Q. Li, Scr. Mater. 193 (2021) 127-131.
DOI URL |
[23] |
Q. Luo, Y. Guo, B. Liu, Y. Feng, J. Zhang, Q. Li, K. Chou, J. Mater. Sci. Technol. 44 (2020) 171-190.
DOI |
[24] |
Q. Li, C.M. Parish, K.A. Powers, M.K. Miller, J. Nucl. Mater 445 (2014) 165-174.
DOI URL |
[25] |
A. Prokhodtseva, B. Décamps, A. Ramar, R. Schäublin, Acta Mater. 61 (2013) 6958-6971.
DOI URL |
[26] |
E.H. Lee, J.D. Hunn, T.S. Byun, L.K. Mansur, J. Nucl. Mater 280 (2000) 18-24.
DOI URL |
[27] |
R. Schäublin, Y.L. Chiu, J. Nucl. Mater 362 (2007) 152-160.
DOI URL |
[28] |
D.M. Stewart, Y.N. Osetsky, R.E. Stoller, S.I. Golubov, T. Seletskaia, P.J. Kamenski, Philos. Mag. 90 (2010) 935-944.
DOI URL |
[29] |
X.K. Lu, X.Y. Chen, Y.J. Feng, P.H. Shi, T.H. Wei, W.C. Liu, Y.X. Wang, Ceram. Int. 45 (2019) 6125-6134.
DOI URL |
[30] |
Y.X. Wang, Q. Xu, T. Yoshiie, Z.Y. Pan, J. Nucl. Mater 376 (2008) 133-138.
DOI URL |
[31] | Y.J. Feng, T.Y. Xin, Q. Xu, Y.X. Wang, Nucl. Eng. 58 (2018), 076024. |
[32] |
C. Liu, L. He, Y. Zhai, B. Tyburska-Püschel, P.M. Voyles, K. Sridharan, D. Morgan, I. Szlufarska, Acta Mater. 125 (2017) 377-389.
DOI URL |
[33] |
C. Liu, I. Szlufarska, J. Nucl. Mater 509 (2018) 392-400.
DOI URL |
[34] |
H.C. Chen, R.D. Lui, C.L. Ren, H.F. Huang, J.J. Li, G.H. Lei, W.D. Xue, W.X. Wang, Q. Huang, D.H. Li, L. Yan, X.T. Zhou, J. Appl. Phys. 120 (2016), 125303.
DOI URL |
[35] |
D. Chen, K. Murakami, K. Dohi, K. Nishida, Z. Li, N. Sekimura, J. Nucl. Mater 529 (2020), 151942.
DOI URL |
[36] |
S. Agarwal, T. Koyanagi, A. Bhattacharya, L. Wang, Y. Katoh, X. Hu, M. Pagan, S.J. Zinkle, Acta Mater. 186 (2020) 1-10.
DOI URL |
[37] |
Y. Li, G. Ran, Y. Guo, Z. Sun, X. Liu, Y. Li, X. Qiu, Y. Xin, Acta Mater. 201 (2020) 462-476.
DOI URL |
[38] |
R. Kobayashi, T. Hattori, T. Tamura, S. Ogata, J. Nucl. Mater 463 (2015) 1071-1074.
DOI URL |
[39] |
J.H. Evans, J. Nucl. Mater 76-77 (1978) 228-234.
DOI URL |
[40] |
H. Trinkaus, W.G. Wolfer, J. Nucl. Mater 122 (1984) 552-557.
DOI URL |
[41] |
H. Xie, N. Gao, K. Xu, G.H. Lu, T. Yu, F. Yin, Acta Mater. 141 (2017) 10-17.
DOI URL |
[42] | H. Schroeder, W. Kesternich, H. Ullmaier, Nucl. Eng. 2 (1985) 65-95. |
[43] |
J. Chen, P. Jung, W. Hoffelner, H. Ullmaier, Acta Mater. 56 (2008) 250-258.
DOI URL |
[44] |
K. Ono, K. Arakawa, N. Yoshida, J. Nucl. Mater 271-272 (1999) 214-219.
DOI URL |
[45] |
D. Brimbal, B. Décamps, A. Barbu, E. Meslin, J. Henry, J. Nucl. Mater 418 (2011) 313-315.
DOI URL |
[46] |
W. Zhang, Z. Shen, Y. Long, Y. Wei, X. Zhou, C. Chen, L. Guo, J. Suo, Philos. Mag. 98 (2018) 2495-2511.
DOI URL |
[47] |
H. Zhang, F. Ren, Y. Wang, M. Hong, X. Xiao, W. Qin, C. Jiang, J. Nucl. Mater 467 (2015) 537-543.
DOI URL |
[48] |
J.A. Hinks, J. Mater. Res. 30 (2015) 1214-1221.
DOI URL |
[49] |
K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, H. Mori, Science 318 (2007) 956-959.
PMID |
[50] |
L. Chen, K. Murakami, D. Chen, H. Abe, Z. Li, N. Sekimura, Scr. Mater. 187 (2020) 453-457.
DOI URL |
[51] |
X. Yi, M.L. Jenkins, M. Briceno, S.G. Roberts, Z. Zhou, M.A. Kirk, Philos. Mag. 93 (2013) 1715-1738.
DOI URL |
[52] |
M. Huang, Y. Li, G. Ran, Z. Yang, P. Wang, J. Nucl. Mater 538 (2020), 152240.
DOI URL |
[53] |
B. Yao, D.J. Edwards, R.J. Kurtz, G.R. Odette, T. Yamamoto, J. Electron Microsc. 61 (2012) 393-400.
DOI URL |
[54] |
J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268 (2010) 1818-1823.
DOI URL |
[55] |
C.M. Jimenez, L.F. Lowe, E.A. Burke, C.H. Sherman, Phys. Rev. 153 (1967) 735-740.
DOI URL |
[56] | M. Abramoff, P. Magalhães, S.J. Ram, Biophotonics Int. 11 (2003) 36-42. |
[57] |
C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9 (2012) 671-675.
PMID |
[58] | D.M. Maher, B.L. Eyre, Philos. Mag. 23 (1971) 409-438. |
[59] |
B. Yao, D.J. Edwards, R.J. Kurtz, J. Nucl. Mater 434 (2013) 402-410.
DOI URL |
[60] |
L.M. Brown, Scr. Metall. 6 (1972) 387-394.
DOI URL |
[61] |
S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33 (1986) 7983-7991.
PMID |
[62] |
G. Lucas, R. Schäublin, J. Phys. Condens. Matter 20 (2008), 415206.
DOI URL |
[63] |
C.C. Fu, F. Willaime, Phys. Rev. B 72 (2005), 064117.
DOI URL |
[64] |
Y.W. You, J.J. Sun, X.S. Kong, X.B. Wu, Y.C. Xu, X.P. Wang, Q.F. Fang, C.S. Liu, Phys. Scr. 95 (2020), 075708.
DOI URL |
[65] |
S.H. Guo, B.E. Zhu, W.C. Liu, Z.Y. Pan, Y.X. Wang, Nucl. Instrum. Methods Phys. Res. Sect. B 267 (2009) 3278-3281.
DOI URL |
[66] |
N. Gao, M.H. Cui, W. Setyawan, R.J. Kurtz, J. Appl. Phys. 124 (2018), 235105.
DOI URL |
[67] |
O. El-Atwani, W.S. Cunningham, E. Esquivel, M. Li, J.R. Trelewicz, B.P. Uberuaga, S.A. Maloy, Acta Mater. 164 (2019) 547-559.
DOI |
[68] |
H.L. Heinisch, F. Gao, R.J. Kurtz, Philos. Mag. 90 (2010) 885-895.
DOI URL |
[69] |
L. Wang, W. Hu, S. Xiao, J. Yang, H. Deng, Nucl. Instrum. Methods Phys. Res., Sect. B 267 (2009) 3185-3188.
DOI URL |
[70] | J.H. Shim, S.C. Kwon, W.W. Kim, B.D. Wirth, J. Nucl. Mater 367-370 (2007) 292-297. |
[71] | W.G. Guo, S.W. Wang, L. Ge, E.G. Fu, Y. Yuan, L. Cheng, G.H. Lu, Nucl. Eng. 60 (2020), 034002. |
[72] |
Y.P. Li, L. Wang, G. Ran, Y. Yuan, L. Wu, X.Y. Liu, X. Qiu, Z.P. Sun, Y.F. Ding, Q. Han, X.Y. Wu, H.Q. Deng, X.Y. Huang, Acta Mater. 206 (2021), 116618.
DOI URL |
[73] |
I. Ipatova, R.W. Harrison, P.T. Wady, S.M. Shubeita, D. Terentyev, S.E. Donnelly, E. Jimenez-Melero, J. Nucl. Mater 501 (2018) 329-335.
DOI URL |
[74] |
S. Ishino, N. Sekimura, H. Sakaida, Y. Kanzaki, Mater. Sci. Forum 97-99 (1992) 165-182.
DOI URL |
[75] |
D.H. Xu, B.D. Wirth, M.M. Li, M.A. Kirk, Acta Mater. 60 (2012) 4286-4302.
DOI URL |
[1] | Zijian Zhang, En-Hou Han, Chao Xiang. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding [J]. J. Mater. Sci. Technol., 2021, 84(0): 230-238. |
[2] | Zhengxiu Luo, Ning Wang, Xiaoyan Pei, Tao Dai, Zhigang Zhao, Congmei Chen, Maofei Ran, Wenjing Sun. Facile one-pot synthesis of superfine palladium nanoparticles on polydopamine-functionalized carbon nanotubes as a nanocatalyst for the Heck reaction [J]. J. Mater. Sci. Technol., 2021, 82(0): 197-206. |
[3] | Kaustubh Bawane, Kathy Lu, Xian-Ming Bai, Jing Hu, Meimei Li, Peter M. Baldo, Edward Ryan. Microstructural evolution of a silicon carbide-carbon coated nanostructured ferritic alloy composite during in-situ Kr ion irradiation at 300°C 450°C [J]. J. Mater. Sci. Technol., 2021, 71(0): 75-83. |
[4] | Weichao Bao, Stuart Robertson, Jia-Wei Zhao, Ji-Xuan Liu, Houzheng Wu, Guo-Jun Zhang, Fangfang Xu. Structural integrity and damage of ZrB2 ceramics after 4 MeV Au ions irradiation [J]. J. Mater. Sci. Technol., 2021, 72(0): 223-230. |
[5] | L. Huang, Z.Q. Chen, P. Huang, X.K. Meng, F. Wang. Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2020, 57(0): 70-77. |
[6] | Shihao Li, Ning Gao, Weizhong Han. In-situ study of initiation and extension of nano-thick defect-free channels in irradiated nickel [J]. J. Mater. Sci. Technol., 2020, 58(0): 114-119. |
[7] | Zhu Hui, Guo Dagang, Zang Hang, A.H. Hanaor Dorian, Yu Sen, Schmidt Franziska, Xu Kewei. Enhancement of hydroxyapatite dissolution through structure modification by Krypton ion irradiation [J]. J. Mater. Sci. Technol., 2020, 38(0): 148-158. |
[8] | Si-Mian Liu, Shi-Hao Li, Wei-Zhong Han. Effect of ordered helium bubbles on deformation and fracture behavior of α-Zr [J]. J. Mater. Sci. Technol., 2019, 35(7): 1466-1472. |
[9] | Peng Xue, Simon Pauly, Weimin Gan, Songshan Jiang, Hongbo Fan, Zhiliang Ning, Yongjiang Huang, Jianfei Sun. Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation [J]. J. Mater. Sci. Technol., 2019, 35(10): 2221-2226. |
[10] | Yu Gao, Wuzhu Sun, Weiyi Yang, Qi Li. Palladium nanoparticles supported on amine-functionalized glass fiber mat for fixed-bed reactors on the effective removal of hexavalent chromium by catalytic reduction [J]. J. Mater. Sci. Technol., 2018, 34(6): 961-968. |
[11] | M.L. Huang, F. Yang. Solder Size Effect on Early Stage Interfacial Intermetallic Compound Evolution in Wetting Reaction of Sn3.0Ag0.5Cu/ENEPIG Joints [J]. J. Mater. Sci. Technol., 2015, 31(3): 252-256. |
[12] | Amandeep Kaur Bal, Rajinder Singh, R.K. Bedi. Effect of Ni7+ Ion Irradiation on Structure and Ammonia Sensing Properties of Thermally Oxidized Zinc and Indium Films [J]. J Mater Sci Technol, 2012, 28(8): 700-706. |
[13] | Mettaya Kitiwan Duangduen Atong. Effects of Porous Alumina Support and Plating Time on Electroless Plating of Palladium Membrane [J]. J Mater Sci Technol, 2010, 26(12): 1148-1152. |
[14] | Hui JIANG, Yaoguang LIU, Ningkang HUANG. Microanalysis on the Hydrogen Ion Irradiated 50 wt pct TiC-C Films [J]. J Mater Sci Technol, 2007, 23(01): 127-130. |
[15] | Yixian CHEN, Baolin HE, Hanfan LIU. Preparation and Characterization of Palladium Colloidal Nanoparticles by Thermal Decomposition of Palladium Acetate with Microwave Irradiation [J]. J Mater Sci Technol, 2005, 21(02): 187-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||