J. Mater. Sci. Technol. ›› 2021, Vol. 86: 20-55.DOI: 10.1016/j.jmst.2021.01.026
• Research Article • Previous Articles Next Articles
Xinliang Xiea,b,d,*(), Shuo Yinc, Rija-nirina Raoelisona, Chaoyue Chene, Christophe Verdya, Wenya Lif, Gang Jib,*(
), Zhongming Rene, Hanlin Liaoa
Received:
2020-10-27
Accepted:
2021-01-04
Published:
2021-09-30
Online:
2021-09-24
Contact:
Xinliang Xie,Gang Ji
About author:
gang.ji@univ-lille.fr (G. Ji).Xinliang Xie, Shuo Yin, Rija-nirina Raoelison, Chaoyue Chen, Christophe Verdy, Wenya Li, Gang Ji, Zhongming Ren, Hanlin Liao. Al matrix composites fabricated by solid-state cold spray deposition: A critical review[J]. J. Mater. Sci. Technol., 2021, 86: 20-55.
Fig. 4. Deposition characteristics of a single ductile particle impacting on metal substrate: (a) schematic deposition window for ductile material [48]; (b) typical morphology of a deformed Al alloy splat [54]; (c) and (d) microstructure evolution within the deformed particle [54]; (e) schematic diagram of the bonding process during particle impact [43].
Fig. 5. Photos of CS components with complex structures and thin coatings: (a) a thick Cu coating was deposited inside a pressure ring for food processing machine; (b) an axisymmetric bulk (Ti6Al4V); (c) a cone structure; (d) Cu coating for power electronic heat sink [28,100].
Fig. 6. Photos of damaged parts before and after CS repair: (a) S-92 helicopter gearbox sump; (b) UH-60 helicopter gearbox sump; (c) gearbox housing reparation using blended Al and Al2O3 powders [101,102].
Methods | Advantages | Shortcomings |
---|---|---|
Mechanical blending | • The content of reinforcement particles can be adjusted over a wide range. • No interface reaction. • Simple operation and low cost. | • Particle size limitation. • Loss of reinforcements during deposition. • Uneven distribution of reinforcements. • Poor interface bonding between the reinforcement particles and the matrix. |
Satellite/wet granulation | • Controlled adherence of small reinforcement particles. • Increased level of ceramic attachment in the CS deposits. | • A little complicated compared to mechanical blending. • A small amount of remaining binder. • Poor interface bonding between the reinforcement particles and the matrix. |
Mechanical ball-milling | • Capable of producing a fine and homogeneous structure within the composite powder. • Good control of the volume fraction, size, and distribution of reinforcement particles. • Produce a relatively strong interface bonding. • Available for producing nanostructured composite powder. | • Particle morphology change and possible interface reaction. • More complex than mechanical blending. • Very low deposition efficiency (DE). • Introduction of impurities during ball milling. |
Spray drying | • Obtaining homogeneous agglomerated composite powders. • Powder with controllable particle size and low oxygen. • A relatively simple operation process. | • Poor cohesion strength. • Low production efficiency and high production cost. • Presence of ultrafine particles |
Gas-atomization | • Introduction of uniformly distributed (nanosized) reinforcements. • Uniformly distributed reinforcements. • Strong interface bonding between the reinforcement and the matrix. • Relative high DE | • Limited reinforcement content • High production cost |
Table 1 Summary of the different composite powder production approaches [103].
Methods | Advantages | Shortcomings |
---|---|---|
Mechanical blending | • The content of reinforcement particles can be adjusted over a wide range. • No interface reaction. • Simple operation and low cost. | • Particle size limitation. • Loss of reinforcements during deposition. • Uneven distribution of reinforcements. • Poor interface bonding between the reinforcement particles and the matrix. |
Satellite/wet granulation | • Controlled adherence of small reinforcement particles. • Increased level of ceramic attachment in the CS deposits. | • A little complicated compared to mechanical blending. • A small amount of remaining binder. • Poor interface bonding between the reinforcement particles and the matrix. |
Mechanical ball-milling | • Capable of producing a fine and homogeneous structure within the composite powder. • Good control of the volume fraction, size, and distribution of reinforcement particles. • Produce a relatively strong interface bonding. • Available for producing nanostructured composite powder. | • Particle morphology change and possible interface reaction. • More complex than mechanical blending. • Very low deposition efficiency (DE). • Introduction of impurities during ball milling. |
Spray drying | • Obtaining homogeneous agglomerated composite powders. • Powder with controllable particle size and low oxygen. • A relatively simple operation process. | • Poor cohesion strength. • Low production efficiency and high production cost. • Presence of ultrafine particles |
Gas-atomization | • Introduction of uniformly distributed (nanosized) reinforcements. • Uniformly distributed reinforcements. • Strong interface bonding between the reinforcement and the matrix. • Relative high DE | • Limited reinforcement content • High production cost |
Composites | Main processing parameters | Substrate material | Ceramic particle size | Ceramic particle content in powders (vol.%) | Ceramic particle content in deposits (vol.%) | Composite deposit hardness (HV) | Adhesion strength (MPa) | Reference |
---|---|---|---|---|---|---|---|---|
SiC/Al12Si | He, Pg=3.0 MPa | Al6061-T6 | 5-45 | 0 | 0 | 110 ± 25 (HV0.3) | 21.7 ± 3.8 | [ |
Tg = 500 ℃ | 20.0 | 10.0 | 145 ± 14 | 20.9 ± 4.3 | [ | |||
30.0 | 14.0 | 163 ± 16 | -- | |||||
40.0 | 17.0 | 175 ± 19 | 16.7 ± 3.6 | |||||
60.0 | 20.0 | 205 ± 25 | -- | |||||
Al2O3/Al | N2, Pg = 0.62 MPa | 7075Al | 25.5 | 0 | 0 | 52 ± 2 (HV0.3) | 40 ± 5 | [ |
7.1 | 7.2 | 60 ± 2.3 | 53 ± 4 | |||||
Tg = 500 ℃ | 24.1 | 11.7 | 62 ± 2.3 | 60 ± 1 | [ | |||
40.6 | 16.5 | 75 ± 4.5 | >60 | |||||
67.2 | 19.2 | 94 ± 10.2 | >60 | |||||
Al2O3/6061Al | He, Pg = 0.62 MPa | Cast AZ91E alloy | 20 | 0 | 0 | 112 ± 10 (HV0.2) | 36.2 ± 2.9 | [ |
25 | 11 | 160 ± 10 | 40.4 ± 3.1 | |||||
Tg = 125 ℃ | 50 | 19 | 168 ± 15 | -- | ||||
75 | 29 | 190 ± 20 | 42.0 ± 0.2 | |||||
α-Al2O3/Al | Compressed air | AZ91 Mg alloy | 1-30 | 0 | 0 | 53 ± 3 (HV0.025) | 18 | |
Pg = 1.6 MPa | 18.6 | 15.1 | 65 ± 5 | 25 | [ | |||
Tg = 230 ℃ | 40.6 | 29.3 | -- | 32 | ||||
TiN/5356Al | Compressed air | Pure Al | 10-45 | 0 | 0 | 53 ± 2 (HV0.2) | 32 ± 4 | [ |
Pg = 2.7 MPa | 13.9 | 17 | 146 ± 10 | -- | ||||
Tg = 510 ℃ | 32.7 | 26 | 175 ± 10 | >50 | ||||
59.3 | 60 | 245 ± 25 | -- | |||||
TiN/2319 | Compressed air, Pg = 2.6 MPa Tg = 490 ℃ | Al | 10-45 | 0 | 0 | 106 ± 7.8 (HV0.2) | -- | [ |
32.7 | 38.7 | 154 ± 18.9 | -- | |||||
Al2O3/Al | He, Pg = 0.62 MPa | AZ91 Mg alloy | 25 | 0 | 0 | 0.96 GPa | -- | [ |
Tg = 200 ℃ | 40.3 | 15 | 1.1 | -- | ||||
SiC/5056Al | Compressed air, Pg = 2.5-2.6 MPa Tg = 600 ℃ | Pure Al | 66.9 | 0 | 0 | 110.4 (HV0.3) | -- | [ |
15 | 21.2 | 135 ± 20 | -- | |||||
30 | 26.4 | 156 ± 15 | -- | |||||
45 | 33.6 | 170 ± 30 | -- | |||||
60 | 41.4 | 213.8 ± 25 | -- | |||||
SiC/7075Al | He, Pg = 0.98 MPa | Al6061-T6 | 7 | 0 | 0 | 136 ± 10.5 (HV0.3) | -- | [ |
10 | 8 | 179 ± 8 | -- | |||||
Tg = 300 ℃ | 20 | 16 | 190 ± 8 | -- | ||||
B4C/7075Al | 15 | 10 | 7.4 | 167 ± 8 | -- | |||
20 | 12 | 178 ± 8 | -- | |||||
Al2O3/A380 | Compressed air, Pg = 2.5 MPa | AZ31 | 48.3 | 0 | 0 | 105 ± 6 (HV0.3) | [ | |
Tg = 450 ℃ | 7.4 | 1.2 | 135 ± 3 | -- | ||||
15 | 2.5 | 130 ± 5 | -- | |||||
26 | 4.8 | 136 ± 4 | -- | |||||
33 | 5.3 | 124 ± 8 | -- | |||||
Al2O3/Al | He, Pg = 0.62 MPa | AZ91D Mg alloy | 20 | 0 | 0 | 62.0 ± 4 (HV2.5) | 20 ± 3 | [ |
15 | 8.9 | 76 ± 2 | 28 ± 6 | |||||
25 | 13.9 | 74 ± 2 | 39 ± 6 | |||||
Tg = 125 ℃ | 35 | 19.8 | 83 ± 3 | 38 ± 7 | ||||
50 | 26.4 | 88 ± 4 | 43 ± 8 | |||||
75 | 39.8 | 120 ± 6 | 32 ± 4 | |||||
Al2O3/Al | N2, Pg = 3.0 MPa | 6061Al | 25.5 (angular) | 0 | 0 | 43 ± 3 (HV0.2) | -- | [ |
7.1 | 7.0 | 58 ± 5 | -- | |||||
Tg = 400 ℃ | 40.6 | 16.1 | 75 ± 6 | -- | ||||
24.26 (spherical) | 7.1 | 2.7 | 47 ± 5 | -- | ||||
40.6 | 8.5 | 59 ± 4 | -- | |||||
Al2O3/Al | N2, Pg = 1.65 MPa | 6061Al | 22 | 0 | 0 | 45.0 ± 8.9 (HV0.3) | 19 ± 2 | [ |
7 | 6.3 | 52.3 ± 1.3 | 30 ± 2 | |||||
Tg = 250 ℃ | 15 | 10.8 | 64.4 ± 1.6 | 30 ± 2 | ||||
23 | 16.1 | 68.5 ± 2.8 | 32 ± 2 | |||||
31 | 21.0 | 72.3 ± 7.1 | 40 ± 2 | |||||
41 | 22.7 | 78.1 ± 5.7 | 43 ± 4 | |||||
51 | 25.2 | 79.9 ± 4.3 | 43 ± 2 | |||||
61 | 30.4 | 86.1 ± 8.1 | 62 ± 7 | |||||
73 | 34.0 | 89.5 ± 3.9 | >70 | |||||
86 | 41.6 | 114.2 ± 12.1 | >70 | |||||
SiC/Al | Compressed air, Pg = 1.5 MPa | - | 11-34 | 0 | 0 | 50 ± 3 (HV0.3) | -- | [ |
23 | 23 | 62 ± 4 | -- | |||||
Tg = 300 ℃ | 46 | 47 | 75 ± 8 | -- | ||||
71 | 52 | 88 ± 4 | -- | |||||
B4C/Al | Compressed air, Pg = 2.2 MPa | Al6061-T6 | 5 | 42 | 23 | 58 ± 2.8 | __ | [ |
Tg = 300-350 ℃ |
Table 2 Summary of the CS-processed AMCs using mixed/blended composite powders.
Composites | Main processing parameters | Substrate material | Ceramic particle size | Ceramic particle content in powders (vol.%) | Ceramic particle content in deposits (vol.%) | Composite deposit hardness (HV) | Adhesion strength (MPa) | Reference |
---|---|---|---|---|---|---|---|---|
SiC/Al12Si | He, Pg=3.0 MPa | Al6061-T6 | 5-45 | 0 | 0 | 110 ± 25 (HV0.3) | 21.7 ± 3.8 | [ |
Tg = 500 ℃ | 20.0 | 10.0 | 145 ± 14 | 20.9 ± 4.3 | [ | |||
30.0 | 14.0 | 163 ± 16 | -- | |||||
40.0 | 17.0 | 175 ± 19 | 16.7 ± 3.6 | |||||
60.0 | 20.0 | 205 ± 25 | -- | |||||
Al2O3/Al | N2, Pg = 0.62 MPa | 7075Al | 25.5 | 0 | 0 | 52 ± 2 (HV0.3) | 40 ± 5 | [ |
7.1 | 7.2 | 60 ± 2.3 | 53 ± 4 | |||||
Tg = 500 ℃ | 24.1 | 11.7 | 62 ± 2.3 | 60 ± 1 | [ | |||
40.6 | 16.5 | 75 ± 4.5 | >60 | |||||
67.2 | 19.2 | 94 ± 10.2 | >60 | |||||
Al2O3/6061Al | He, Pg = 0.62 MPa | Cast AZ91E alloy | 20 | 0 | 0 | 112 ± 10 (HV0.2) | 36.2 ± 2.9 | [ |
25 | 11 | 160 ± 10 | 40.4 ± 3.1 | |||||
Tg = 125 ℃ | 50 | 19 | 168 ± 15 | -- | ||||
75 | 29 | 190 ± 20 | 42.0 ± 0.2 | |||||
α-Al2O3/Al | Compressed air | AZ91 Mg alloy | 1-30 | 0 | 0 | 53 ± 3 (HV0.025) | 18 | |
Pg = 1.6 MPa | 18.6 | 15.1 | 65 ± 5 | 25 | [ | |||
Tg = 230 ℃ | 40.6 | 29.3 | -- | 32 | ||||
TiN/5356Al | Compressed air | Pure Al | 10-45 | 0 | 0 | 53 ± 2 (HV0.2) | 32 ± 4 | [ |
Pg = 2.7 MPa | 13.9 | 17 | 146 ± 10 | -- | ||||
Tg = 510 ℃ | 32.7 | 26 | 175 ± 10 | >50 | ||||
59.3 | 60 | 245 ± 25 | -- | |||||
TiN/2319 | Compressed air, Pg = 2.6 MPa Tg = 490 ℃ | Al | 10-45 | 0 | 0 | 106 ± 7.8 (HV0.2) | -- | [ |
32.7 | 38.7 | 154 ± 18.9 | -- | |||||
Al2O3/Al | He, Pg = 0.62 MPa | AZ91 Mg alloy | 25 | 0 | 0 | 0.96 GPa | -- | [ |
Tg = 200 ℃ | 40.3 | 15 | 1.1 | -- | ||||
SiC/5056Al | Compressed air, Pg = 2.5-2.6 MPa Tg = 600 ℃ | Pure Al | 66.9 | 0 | 0 | 110.4 (HV0.3) | -- | [ |
15 | 21.2 | 135 ± 20 | -- | |||||
30 | 26.4 | 156 ± 15 | -- | |||||
45 | 33.6 | 170 ± 30 | -- | |||||
60 | 41.4 | 213.8 ± 25 | -- | |||||
SiC/7075Al | He, Pg = 0.98 MPa | Al6061-T6 | 7 | 0 | 0 | 136 ± 10.5 (HV0.3) | -- | [ |
10 | 8 | 179 ± 8 | -- | |||||
Tg = 300 ℃ | 20 | 16 | 190 ± 8 | -- | ||||
B4C/7075Al | 15 | 10 | 7.4 | 167 ± 8 | -- | |||
20 | 12 | 178 ± 8 | -- | |||||
Al2O3/A380 | Compressed air, Pg = 2.5 MPa | AZ31 | 48.3 | 0 | 0 | 105 ± 6 (HV0.3) | [ | |
Tg = 450 ℃ | 7.4 | 1.2 | 135 ± 3 | -- | ||||
15 | 2.5 | 130 ± 5 | -- | |||||
26 | 4.8 | 136 ± 4 | -- | |||||
33 | 5.3 | 124 ± 8 | -- | |||||
Al2O3/Al | He, Pg = 0.62 MPa | AZ91D Mg alloy | 20 | 0 | 0 | 62.0 ± 4 (HV2.5) | 20 ± 3 | [ |
15 | 8.9 | 76 ± 2 | 28 ± 6 | |||||
25 | 13.9 | 74 ± 2 | 39 ± 6 | |||||
Tg = 125 ℃ | 35 | 19.8 | 83 ± 3 | 38 ± 7 | ||||
50 | 26.4 | 88 ± 4 | 43 ± 8 | |||||
75 | 39.8 | 120 ± 6 | 32 ± 4 | |||||
Al2O3/Al | N2, Pg = 3.0 MPa | 6061Al | 25.5 (angular) | 0 | 0 | 43 ± 3 (HV0.2) | -- | [ |
7.1 | 7.0 | 58 ± 5 | -- | |||||
Tg = 400 ℃ | 40.6 | 16.1 | 75 ± 6 | -- | ||||
24.26 (spherical) | 7.1 | 2.7 | 47 ± 5 | -- | ||||
40.6 | 8.5 | 59 ± 4 | -- | |||||
Al2O3/Al | N2, Pg = 1.65 MPa | 6061Al | 22 | 0 | 0 | 45.0 ± 8.9 (HV0.3) | 19 ± 2 | [ |
7 | 6.3 | 52.3 ± 1.3 | 30 ± 2 | |||||
Tg = 250 ℃ | 15 | 10.8 | 64.4 ± 1.6 | 30 ± 2 | ||||
23 | 16.1 | 68.5 ± 2.8 | 32 ± 2 | |||||
31 | 21.0 | 72.3 ± 7.1 | 40 ± 2 | |||||
41 | 22.7 | 78.1 ± 5.7 | 43 ± 4 | |||||
51 | 25.2 | 79.9 ± 4.3 | 43 ± 2 | |||||
61 | 30.4 | 86.1 ± 8.1 | 62 ± 7 | |||||
73 | 34.0 | 89.5 ± 3.9 | >70 | |||||
86 | 41.6 | 114.2 ± 12.1 | >70 | |||||
SiC/Al | Compressed air, Pg = 1.5 MPa | - | 11-34 | 0 | 0 | 50 ± 3 (HV0.3) | -- | [ |
23 | 23 | 62 ± 4 | -- | |||||
Tg = 300 ℃ | 46 | 47 | 75 ± 8 | -- | ||||
71 | 52 | 88 ± 4 | -- | |||||
B4C/Al | Compressed air, Pg = 2.2 MPa | Al6061-T6 | 5 | 42 | 23 | 58 ± 2.8 | __ | [ |
Tg = 300-350 ℃ |
Fig. 7. The blending mixed powders with different particle morphologies: (a) irregular SiC/5056Al [91]; (b) irregular Al2O3/Al [104]; (c) dodecahedral diamond/Al [105]; (d) near-spherical Al2O3/A380 [106].
Fig. 8. Scanning electron microscope (SEM) images showing the surface morphologies of the (a, c) satellited composite feedstocks with attached fine TiC particles and (b, d) the cross-sectional microstructures of the corresponding CS deposits: (a) and (b) TiC/Al; (c) and (d) TiC/6061Al [108,109].
Materials | Main processing parameters | Substrate material | Ceramic particle size | Ceramic particles content in powders (vol.%) | Ceramic particles content in deposits (vol.%) | Composite deposit hardness | Reference |
---|---|---|---|---|---|---|---|
B4C/5356Al | He, Pg = 3.0 MPa Tg = 500 ℃ | Al6061-T6 | 3-14 | 0 | 0 | 133.1 ± 6.5 (HV0.3) | [ |
Preheating powder (150 ℃) | |||||||
20 | 17.5 ± 1.8 | 251.4 ± 7.8 | |||||
Diamond/Al | N2, Pg = 1.73 MPa | 1018 steel substrate | nanosized | 0 | 0 | 1.10 GPa | [ |
10 | ∼10 | 3.02 | |||||
Tg = 450 ℃ | |||||||
TiB2/Al | He, Pg = 2.9 MPa | Al6061 | 5-100 nm | 20 wt.% | ∼20 wt.% | 132 ± 22 (HV) | [ |
TiN/Al5356 | Compressed air, Pg = 2.7 MPa Tg = 510 ℃ | Al | - | 0 | 0 | 68.7 ± 11.6 (HV0.2) | [ |
60.8 ± 7.7 | 53.2 ± 10.8 | 250 ± 33.8 | |||||
Al2O3/Al | He, Pg = 0.78 MPa | Mild steel | 4 nm | 0 | 0 | 0.96 ± 0.09 GPa | [ |
Tg = 500 ℃ | |||||||
annealed at 450 ℃ for 15 min | |||||||
5 | 5 | 1.3 ± 0.3 | |||||
SiC/5056Al | N2, Pg = 2.8 MPa | SiC/2009Al | 26.5μm | 0 | 0 | 125 ± 6 (HV0.01) | [ |
Tg = 500 ℃ | T4 | 20 | 18 | 143 ± 16 | |||
2.1 μm | 20 | 20 | 148 (HV0.1) | ||||
CNT/Al | He, Pg = 2.4 MPa | Al 1050 | 20-50 nm | 0 | 0 | 58.6 (HV0.1) | [ |
0.5 wt.% | 0.5 wt.% | 131.2 | |||||
Tg = 300 ℃ | 1.0 wt.% | 1.0 wt.% | 172.1 |
Table 3 Summary of the CS-processed AMCs using ball-milled composite powders.
Materials | Main processing parameters | Substrate material | Ceramic particle size | Ceramic particles content in powders (vol.%) | Ceramic particles content in deposits (vol.%) | Composite deposit hardness | Reference |
---|---|---|---|---|---|---|---|
B4C/5356Al | He, Pg = 3.0 MPa Tg = 500 ℃ | Al6061-T6 | 3-14 | 0 | 0 | 133.1 ± 6.5 (HV0.3) | [ |
Preheating powder (150 ℃) | |||||||
20 | 17.5 ± 1.8 | 251.4 ± 7.8 | |||||
Diamond/Al | N2, Pg = 1.73 MPa | 1018 steel substrate | nanosized | 0 | 0 | 1.10 GPa | [ |
10 | ∼10 | 3.02 | |||||
Tg = 450 ℃ | |||||||
TiB2/Al | He, Pg = 2.9 MPa | Al6061 | 5-100 nm | 20 wt.% | ∼20 wt.% | 132 ± 22 (HV) | [ |
TiN/Al5356 | Compressed air, Pg = 2.7 MPa Tg = 510 ℃ | Al | - | 0 | 0 | 68.7 ± 11.6 (HV0.2) | [ |
60.8 ± 7.7 | 53.2 ± 10.8 | 250 ± 33.8 | |||||
Al2O3/Al | He, Pg = 0.78 MPa | Mild steel | 4 nm | 0 | 0 | 0.96 ± 0.09 GPa | [ |
Tg = 500 ℃ | |||||||
annealed at 450 ℃ for 15 min | |||||||
5 | 5 | 1.3 ± 0.3 | |||||
SiC/5056Al | N2, Pg = 2.8 MPa | SiC/2009Al | 26.5μm | 0 | 0 | 125 ± 6 (HV0.01) | [ |
Tg = 500 ℃ | T4 | 20 | 18 | 143 ± 16 | |||
2.1 μm | 20 | 20 | 148 (HV0.1) | ||||
CNT/Al | He, Pg = 2.4 MPa | Al 1050 | 20-50 nm | 0 | 0 | 58.6 (HV0.1) | [ |
0.5 wt.% | 0.5 wt.% | 131.2 | |||||
Tg = 300 ℃ | 1.0 wt.% | 1.0 wt.% | 172.1 |
Fig. 9. Particle morphology evolution as a function of ball-milling time (2 h, 8 h, and 16 h) for the 20 wt.% SiC/5056Al composite powders with large and fine SiC particles [110].
Fig. 10. SEM images showing the (a) as-received Al and nanodiamond/Al composite powders (5 wt.% ND) after ball-milling for (b) 1 h, (c) 4 h, and (d) 10 h. (e) and (f) Particle size distribution evolution. (f) Raman spectra of the ball-milled ND/Al composite powder [98].
Fig. 11. Surface morphologies and cross-sectional views of the composite powders using high energy ball milling (a-c) TiB2/Al [113] and low energy ball milling (d-f) TiN/5356Al [114].
Fig. 12. Particle morphology evolution of the ball-milled CNTs/Al composite powder with different contents of CNTs:(a, d) pure Al, (b, e) 1.0 vol.% CNTs, and (c, f) 3.0 vol.% CNTs. (g-h) Transmission Electron Microscope (TEM) characterization of the 3.0 vol.% CNTs/Al composite powder showing the nanocrystalline structure and the embedded CNTs in the Al matrix [112].
Fig. 13. (a) Schematic illustration of the shift-speed ball milling process for the synthesis of the CNT/AlSi composite powder for CS deposition; (b) Particle morphology and (d) cross-sectional view of the CNT/AlSi composite particle; (c) Observation of CNTs on the particle surface at high magnification; (e) and (f) TEM images showing the dispersed CNTs within the Al matrix; (g) TEM/electron backscattered diffraction (EBSD) orientation map [96].
Fig. 14. SEM images showing (a) spray-dried Al-Si agglomerates and (b) magnified region in (a) to highlight agglomerated CNTs. (c) Schematic diagram of the composite powder preparation and CS deposition processes [95].
Fig. 15. The morphology of gas-atomized TiB2/7075Al composite powder with uniformly distributed TiB2 nanoparticles [76]: (a) Particle surface morphology; (b) Magnified view showing uniformly distributed TiB2 nanoparticles on the particle surface; (c) Cross-sectional view of the composite particle; (d) EBSD orientation mapping; (e) Grain size distribution; (f) Magnified view of the region marked in (c).
Fig. 18. The CS deposition behavior of the ball-milled ND/Al composite powder: (a) DE, (b) particle impact velocity, and (c) microhardness of pure Al and composite powders as a function of milling time [97].
Fig. 20. (a) Al2O3 content in deposits versus Al2O3 content in feedstock powder with different morphologies (spherical and angular) [136]. (b) SiC content in deposits as a function of SiC particle size using the same content of SiC particles (30 vol.%) in the feedstocks [92].
Fig. 21. Evolution of the SiC content within the 5056Al matrix as a function of powder preparation methods (mechanical blending and ball milling) using the same initial volume fraction of SiC (20 vol.%) in the composite powders [110].
Fig. 23. Typical microstructures of the CS composites using mechanical blending method: (a) Al2O3/Al [137]; (b) SiC/5056Al [130]; (c) SiC/Al [122]; (d) EBSD pattern quality map of the cross-section of Al2O3/Al composite. (e) TEM and (f) high resolution images showing the Al/Al2O3 interface [122].
Fig. 24. SEM/EBSD orientation maps of the (a) CS pure A380 deposit and Al2O3/A380 composites with the addition of (b) spherical and (c) irregular or (d) both spherical and irregular Al2O3 particles (white particles) [138].
Fig. 25. Microstructure comparison of the 20 vol.% SiC/5056Al composites produced using (a) mechanical blended powders and ball-milled composite powders with different ball milling duration: (b) 2 h (c) 8 h; (d) 16 h [110].
Fig. 26. (a, d) SEM and (b, e) TEM images showing the microstructure of the CS CNT/Al composite. (c) SAED pattern of the Al matrix in (b). (f) High resolution TEM image showing the embedded CNTs in the Al matrix [111,112].
Fig. 27. (a, b) SEM and (c, d) TEM images showing the CS (a) pure AlSi and (b) CNT/AlSi composites. (e) TEM/EBSD orientation map; (f) grain size distribution of Al matrix [96].
Fig. 28. (a) SEM image showing the microstructure of the CS TiB2/7075Al composite produced using gas-atomized composite powder. (b) SEM/EBSD orientation map of the Al matrix; (c) and (d) TEM images showing the uniformly distributed TiB2 nanoparticles and precipitates [76].
Fig. 31. Variation of adhesion strength of the 20 vol.% SiC/5056Al composite deposit as a function of the powder preparation method and the SiC particle size [110].
Materials | Substrate material | Test method | Testing conditions | Main finding | Reference |
---|---|---|---|---|---|
Al2O3/Al | 7075Al | Dry abrasive test | A load of 45 N for 10 min. | Abrasion resistance was independent of the alumina mass fraction in the deposits. The poor cohesion between Al and Al2O3 limits the improvement of the abrasion resistance. | [ |
Al2O3/6061Al | Cast AZ91E alloy | Ball-on-disc | A load of 3 N, the linear speed of 20 cm s-1; a sliding length of 500 m and 6 mm ball-bearing steel. | Significant reduction of the wear rate of the composite deposit. Increasing Al2O3 addition gradually changes the wear mode from adhesive to abrasive. | [ |
TiN/Al5356 | Pure Al | Ball-on-disc | A load of 2 N and 0.2 m s-1, a sliding distance of 50 m, 6 mm diameter steel ball. | Wear rates of the ball-milled composites is lower than the blend mixed composite. | [ |
SiC/5056Al | Pure Al | Ball-on-disc | Loads of 2 N and 10 N, A peed of 20 cm s-1, sliding distance of 500 m, 6 mm diameter WC/Co ball. | The SiC particle and its content in the deposit influence the tribological behavior of the composite deposit. | [ |
SiC/7075Al | 6061Al-T6 | Reciprocating wear test | A normal load of 1 N, sliding stroke, total sliding distance, and sliding velocity were 0.002 m, 10 m, and 0.002 m s-1, 6 mm Al2O3 ball. | B4C reinforced composite deposits exhibited higher wear resistance when compared to SiC reinforced ones. | [ |
B4C/7075Al | |||||
Al2O3/A380 | AZ31 | Ball-on-disc | A load of 3 N, a speed of 180 rpm wear length was 37.7 m, 6 mm diameter Al2O3 ball. | With an increase of Al2O3 content in the composite deposits, the wear mechanism of the deposit is changed from adhesive wear to a combination of delamination and abrasive wear. | [ |
Al2O3/Al | 6061Al | Sliding wear tests | A normal load of 1 N, sliding speed of 3 mm s-1, a track length of 10 mm, α-Al2O3 ball of 6.35 mm diameter. | The spherical Al2O3 morphology was associated with improved tribological behavior compared to the angular morphology. | [ |
Al2O3/Al | 6061Al | Sliding wear test | A load of 25 N, three different travel lengths: 25, 50, and 100 m. Al2O3 ball. | Deposit with higher alumina content did not show an increment in wear resistance. | [ |
SiC/Al | - | Sliding wear test | Different sliding velocities (0.5, 1, and 2 m s-1) and loads (1, 5, and 10 kg). sliding time was 15 min. WC-Co discs. | Increasing SiC particulate volume greatly enhances the wear performance of the deposits. | [ |
B4C/5356Al | 6061Al-T6 | Reciprocating sliding wear test | The normal load of 16.25 N, a linear 10 mm s-1 velocity, a sliding distance of 500 m. | The presence of homogeneously distributed fine B4C reinforcement particles within the matrix could significantly improve the dry sliding wear resistance. | [ |
MWCNT/Al | 1050Al | Pin-on-disc tests | A load of 100 N duration of 300 s. The rotating diameter of the pin was 20 mm under 100 rpm. cylindrical bearing steel of 3 mm diameter. | The wear loss decreased, and COF decreased with an increase in CNT fractions. | [ |
TiC/6061Al | 6082Al | Ball-on-flat reciprocating dry-sliding wear tests | A normal load of 5 N, a linear displacement of 5 mm, and 1 Hz frequency for 10 min. | Using a satellite feedstock is more efficient in reducing the deposit swear rate in comparison to deposits made using blended mixtures. | [ |
Table 4 Summary of the wear behavior of the CS AMC deposits.
Materials | Substrate material | Test method | Testing conditions | Main finding | Reference |
---|---|---|---|---|---|
Al2O3/Al | 7075Al | Dry abrasive test | A load of 45 N for 10 min. | Abrasion resistance was independent of the alumina mass fraction in the deposits. The poor cohesion between Al and Al2O3 limits the improvement of the abrasion resistance. | [ |
Al2O3/6061Al | Cast AZ91E alloy | Ball-on-disc | A load of 3 N, the linear speed of 20 cm s-1; a sliding length of 500 m and 6 mm ball-bearing steel. | Significant reduction of the wear rate of the composite deposit. Increasing Al2O3 addition gradually changes the wear mode from adhesive to abrasive. | [ |
TiN/Al5356 | Pure Al | Ball-on-disc | A load of 2 N and 0.2 m s-1, a sliding distance of 50 m, 6 mm diameter steel ball. | Wear rates of the ball-milled composites is lower than the blend mixed composite. | [ |
SiC/5056Al | Pure Al | Ball-on-disc | Loads of 2 N and 10 N, A peed of 20 cm s-1, sliding distance of 500 m, 6 mm diameter WC/Co ball. | The SiC particle and its content in the deposit influence the tribological behavior of the composite deposit. | [ |
SiC/7075Al | 6061Al-T6 | Reciprocating wear test | A normal load of 1 N, sliding stroke, total sliding distance, and sliding velocity were 0.002 m, 10 m, and 0.002 m s-1, 6 mm Al2O3 ball. | B4C reinforced composite deposits exhibited higher wear resistance when compared to SiC reinforced ones. | [ |
B4C/7075Al | |||||
Al2O3/A380 | AZ31 | Ball-on-disc | A load of 3 N, a speed of 180 rpm wear length was 37.7 m, 6 mm diameter Al2O3 ball. | With an increase of Al2O3 content in the composite deposits, the wear mechanism of the deposit is changed from adhesive wear to a combination of delamination and abrasive wear. | [ |
Al2O3/Al | 6061Al | Sliding wear tests | A normal load of 1 N, sliding speed of 3 mm s-1, a track length of 10 mm, α-Al2O3 ball of 6.35 mm diameter. | The spherical Al2O3 morphology was associated with improved tribological behavior compared to the angular morphology. | [ |
Al2O3/Al | 6061Al | Sliding wear test | A load of 25 N, three different travel lengths: 25, 50, and 100 m. Al2O3 ball. | Deposit with higher alumina content did not show an increment in wear resistance. | [ |
SiC/Al | - | Sliding wear test | Different sliding velocities (0.5, 1, and 2 m s-1) and loads (1, 5, and 10 kg). sliding time was 15 min. WC-Co discs. | Increasing SiC particulate volume greatly enhances the wear performance of the deposits. | [ |
B4C/5356Al | 6061Al-T6 | Reciprocating sliding wear test | The normal load of 16.25 N, a linear 10 mm s-1 velocity, a sliding distance of 500 m. | The presence of homogeneously distributed fine B4C reinforcement particles within the matrix could significantly improve the dry sliding wear resistance. | [ |
MWCNT/Al | 1050Al | Pin-on-disc tests | A load of 100 N duration of 300 s. The rotating diameter of the pin was 20 mm under 100 rpm. cylindrical bearing steel of 3 mm diameter. | The wear loss decreased, and COF decreased with an increase in CNT fractions. | [ |
TiC/6061Al | 6082Al | Ball-on-flat reciprocating dry-sliding wear tests | A normal load of 5 N, a linear displacement of 5 mm, and 1 Hz frequency for 10 min. | Using a satellite feedstock is more efficient in reducing the deposit swear rate in comparison to deposits made using blended mixtures. | [ |
Fig. 32. SEM images showing the wear tracks of the CS pure Al deposit, (b) 50 % Al2O3/Al composite, and (c) 75 % Al2O3/Al composite. (d) Comparison of the wear rates of Al deposits and bulk alloys [140].
Fig. 33. TEM investigation of the wear mechanisms of CS Al2O3/Al composite deposit: (a) technique of TEM foil preparation by focus ion beam; (b) and (c) wear track surfaces showing TEM foil locations; (d) TEM micrograph of the cross-sectional region near the wear track surface; (e) and (f) TEM/EDS mapping of Al and O elemental maps in the third body, the surrounding first body, and interfaces [141].
Materials | Main processing parameters | Substrate material | Ceramic particle size (μm) | Ceramic particles content in powders (vol.%) | Corrosion test conditions | Corrosion behavior | Reference |
---|---|---|---|---|---|---|---|
αAl2O3/Al | Air, Pg = 1.6 MPa | AZ91D Mg alloy | 1-30 | 25, 50 | 3.5 wt.% NaCl solution | The addition of α-Al2O3 has no passive effect on the anti-corrosion ability of the composite deposits. | [ |
Tg = 230 ℃ | |||||||
Al2O3/Al | N2, Pg = 0.62 MPa | mild steel and Al7075 | 25.5 | 10, 30, 50, 75 | 3.5 wt.% NaCl solution | Composite deposits were as efficient as pure Al deposits in providing corrosion protection against alternated immersion in saltwater and salt spray environment. | [ |
Tg = 500 ℃ | |||||||
Al2O3/Al | He, Pg 0.62 MPa | AZ91E Mg alloy | 20 | 25, 50, 75 | 5 wt.% NaCl solution | Neither the Al2O3 content nor a post-spray heat treatment had any significant effect on the polarization behavior of the deposits. | [ |
Al2O3/6061Al | Tg = 125 ℃ | ||||||
SiC/5056Al | Air, Pg = 2.6 MPa | Al | 48-92.6 | 15, 30, 60 | 0.1 M Na2SO4 solution | Composite deposits showed better corrosion resistance than the 5056Al deposit, but the SiC content makes no sense on anodic polarization behavior. | [ |
Tg = 600 ℃ | |||||||
SiC/7075Al | He, Pg = 0.98 MPa | T6 6061 Al alloy | 28 | 20 | 3.5 wt.% NaCl solution | The addition of ceramic particles increased corrosion current densities. | [ |
B4C/7075Al | Tg = 300 ℃ | 7 | |||||
Mg17Al12/Al | He, Pg = 0.98 MPa | AZ91D Mg alloy | 48.5 | 50, 70 | 3.5 wt.% NaCl solution | The anti-corrosion performance was degraded by adding the hard particles to the Al matrix. | [ |
Tg = 300 ℃ | |||||||
Al2O3/Al | N2, Pg = 2.5 MPa | Low carbon steel | 63 | 25 | 5 wt.% NaCl solution | The reinforced deposit showed a slightly higher corrosion resistance compared to the pure Al deposits. | [ |
Tg = 350 ℃ | |||||||
Al2O3/Al | He, Pg=0.62 MPa | AZ91 Mg alloy | 20 | 25, 50, 75 | 3.5 wt.% NaCl solution | Corrosion potentials were lower than the bulk Al. | [ |
Tg = 125 ℃ | |||||||
Al2O3/2024Al | Air, Pg = 0.9 MPa | 2024Al-T3 | 15-45 | 20, 40, 60 | 3.5 wt.% NaCl solution | Al2O3/Al2024 deposit displayed the lowest corrosion current density and highest corrosion resistance. | [ |
Tg = 600 ℃ | |||||||
Al2O3/5083Al | He, Pg = 1.0 MPa | ZM 5 magnesium alloy | 40 | 20, 40, 60 | 3.5 wt.% NaCl solution | Better corrosion resistance was obtained for the 20 vol.% Al2O3/5083Al. | [ |
Tg = 400 ℃ | |||||||
TiB2/7075Al | Compressed air, Pg = 3.0 MPa, Tg = 500 ℃ | 7075Al-T6 | Nano-sized | 4.2 | 0.1 M & 0.6 M NaCl solution | The addition of TiB2 nanoparticles reduces the corrosion resistance of CS 7075Al coatings. | [ |
He, Pg = 1.8 MPa, Tg = 320 ℃ | Greater plastic deformation and precipitation lead to lower corrosion resistance. | ||||||
A low-temperature annealing treatment improves the corrosion resistance of CS coatings. |
Table 5 Summary of the corrosion behavior of the CS AMC deposits [129].
Materials | Main processing parameters | Substrate material | Ceramic particle size (μm) | Ceramic particles content in powders (vol.%) | Corrosion test conditions | Corrosion behavior | Reference |
---|---|---|---|---|---|---|---|
αAl2O3/Al | Air, Pg = 1.6 MPa | AZ91D Mg alloy | 1-30 | 25, 50 | 3.5 wt.% NaCl solution | The addition of α-Al2O3 has no passive effect on the anti-corrosion ability of the composite deposits. | [ |
Tg = 230 ℃ | |||||||
Al2O3/Al | N2, Pg = 0.62 MPa | mild steel and Al7075 | 25.5 | 10, 30, 50, 75 | 3.5 wt.% NaCl solution | Composite deposits were as efficient as pure Al deposits in providing corrosion protection against alternated immersion in saltwater and salt spray environment. | [ |
Tg = 500 ℃ | |||||||
Al2O3/Al | He, Pg 0.62 MPa | AZ91E Mg alloy | 20 | 25, 50, 75 | 5 wt.% NaCl solution | Neither the Al2O3 content nor a post-spray heat treatment had any significant effect on the polarization behavior of the deposits. | [ |
Al2O3/6061Al | Tg = 125 ℃ | ||||||
SiC/5056Al | Air, Pg = 2.6 MPa | Al | 48-92.6 | 15, 30, 60 | 0.1 M Na2SO4 solution | Composite deposits showed better corrosion resistance than the 5056Al deposit, but the SiC content makes no sense on anodic polarization behavior. | [ |
Tg = 600 ℃ | |||||||
SiC/7075Al | He, Pg = 0.98 MPa | T6 6061 Al alloy | 28 | 20 | 3.5 wt.% NaCl solution | The addition of ceramic particles increased corrosion current densities. | [ |
B4C/7075Al | Tg = 300 ℃ | 7 | |||||
Mg17Al12/Al | He, Pg = 0.98 MPa | AZ91D Mg alloy | 48.5 | 50, 70 | 3.5 wt.% NaCl solution | The anti-corrosion performance was degraded by adding the hard particles to the Al matrix. | [ |
Tg = 300 ℃ | |||||||
Al2O3/Al | N2, Pg = 2.5 MPa | Low carbon steel | 63 | 25 | 5 wt.% NaCl solution | The reinforced deposit showed a slightly higher corrosion resistance compared to the pure Al deposits. | [ |
Tg = 350 ℃ | |||||||
Al2O3/Al | He, Pg=0.62 MPa | AZ91 Mg alloy | 20 | 25, 50, 75 | 3.5 wt.% NaCl solution | Corrosion potentials were lower than the bulk Al. | [ |
Tg = 125 ℃ | |||||||
Al2O3/2024Al | Air, Pg = 0.9 MPa | 2024Al-T3 | 15-45 | 20, 40, 60 | 3.5 wt.% NaCl solution | Al2O3/Al2024 deposit displayed the lowest corrosion current density and highest corrosion resistance. | [ |
Tg = 600 ℃ | |||||||
Al2O3/5083Al | He, Pg = 1.0 MPa | ZM 5 magnesium alloy | 40 | 20, 40, 60 | 3.5 wt.% NaCl solution | Better corrosion resistance was obtained for the 20 vol.% Al2O3/5083Al. | [ |
Tg = 400 ℃ | |||||||
TiB2/7075Al | Compressed air, Pg = 3.0 MPa, Tg = 500 ℃ | 7075Al-T6 | Nano-sized | 4.2 | 0.1 M & 0.6 M NaCl solution | The addition of TiB2 nanoparticles reduces the corrosion resistance of CS 7075Al coatings. | [ |
He, Pg = 1.8 MPa, Tg = 320 ℃ | Greater plastic deformation and precipitation lead to lower corrosion resistance. | ||||||
A low-temperature annealing treatment improves the corrosion resistance of CS coatings. |
Fig. 34. (a-f) SEM images showing the corroded morphologies of the CS SiC/5056Al composite deposits after immersion in a Na2SO4 solution. (g) Corrosion process of the CS SiC/Al 5056 composite deposit and release of SiC particle [130].
Fig. 35. Summary of the tensile properties of AMCs produced by CS and post-treatments including heat treatment, hot rolling (HR), and FSP, as well as the Al alloy parts produced by SLM and casting [73,76,125,126,138,[149], [150], [151], [152], [153], [154], [155]].
Fig. 36. Tensile properties of the CS SiC/Al composites:(a) stress-strain curves and (b) ultimate tensile strength as a function of SiC content; (c) and (d) Fractured morphologies of the as-sprayed Al-47SiC composite [125].
Fig. 37. Variation of (a) UTS and (b) elongation of the as-sprayed 7075Al and TiB2/7075Al composite samples fabricated using different CS parameters (C1: compressed air, 3.0 MPa, 550 °C; C2: N2, 5.0 MPa, 500 ℃; C3: He, 1.8 MPa, 320 °C). SEM images showing the fracture morphologies of the as-sprayed TiB2/7075 Al composites fabricated using different CS parameters after tensile tests: (c) C1; (d) C2; (e) C3 [76].
Fig. 39. (a) Tensile stress-strain curves of the as-sprayed and heat-treated B4C/Al composite samples. Fracture morphologies of (b and c) as-sprayed and (d and e) heat-treated (500 °C) B4C/Al composite samples [73].
Fig. 40. Tensile stress-strain curves of the (a) as-sprayed and (b) heat-treated pure A380 and Al2O3/A380 composite deposits. Fracture morphologies of the (c, d) as-sprayed and (e, f) heat-treated Al2O3/A380 composite deposits after tensile tests. (S) composite represents the composite sample reinforced with spherical Al2O3 particles, (l) composite represents the composite sample reinforced with irregular Al2O3 particles, and (S + l) composite indicates the composite sample reinforced with both spherical and irregular Al2O3 particles [138].
Fig. 41. (a-c) SEM images and (d-f) EBSD orientation maps showing the etched microstructure of the (a, d) as-sprayed and annealed TiB2/AlSi10Mg composite samples at (b, e) 400 °C and (c, f) 500 °C for 4 h [156].
Fig. 42. (a) UTS and (b) elongation values of the as-sprayed and annealed pure AlSi10Mg and TiB2/AlSi10Mg composites. Fracture morphologies of the (c) as-sprayed and annealed TiB2/AlSi10Mg composite samples at (d) 300 °C, (e) 400 °C, and (f) 500 °C [156].
Fig. 44. Microstructure of the(a, c) as-sprayed and (b, d) hot rolled B4C/Al composite samples (60 % thickness reduction) [126]: (a) and (b) optical micrographs; (c) and (d) EBSD maps; (e) High resolution TEM image showing the interface feature. (f) Fourier transform (IFFT) image of the region highlighted in panel (e).
Fig. 45. (a) Tensile stress-strain curves of as-sprayed and hot-rolled B4C/Al composite samples, (b) comparison between YS (yield strength), UTS, and elongation values of the as-sprayed, hot rolled, and heat-treated samples. SEM images showing the fractured morphologies of (c-e) as-sprayed and (f-h) hot rolled B4C/Al composite samples (60 % thickness reduction) after tensile tests [126]. TMT-20, TMT-40, and TMT-60 represent the hot-rolled samples with the thickness reduction of 20 %, 40 % and 60 %, respectively. HT@600 °C indicates the samples heat-treated at 600 °C for 4 h.
Fig. 46. (a) FSP modification of CS Ti deposits onto Al substrate; (b) Schematic of FSP process; (c) Schematic representation of FSP as a modifying post-processing technique during CSAM [165].
Fig. 47. Microstructure modification of the CS AMCs conducted by FSP post-treatment: (a) Macroscopic cross-section of the CS Al2O3/2024Al after FSP treatment [150]; (b) Schematic diagram showing the redistributed reinforcement particles in AMCs by FSP [166]; Optical micrographs (c, d) and SEM (e, f) images showing the microstructure of as-sprayed (c, e) and FSP treated (d, f) Al2O3/2024Al composites [150]. (g) Microhardness evolution and (h) the tensile stress-strain curves of the FSP processed Al2O3/2024Al composites [150].
Fig. 48. Comparison of the microstructure of the as-sprayed TiB2/AlSi10Mg composite (a-c) with the one after post-FSP treatment (d-f): (a) and (d) SEM images showing the cross-sectional morphologies; (b) and (e) SEM/EBSD orientation maps; (c) and (f) TEM images; (g) and (h) High resolution TEM images showing the TiB2/Al interface, and (i) corresponding FFT pattern of (h) [152].
Fig. 49. (a) Tensile stress-strain curves for pure AlSi10Mg and TiB2/AlSi10Mg composites before and after FSP treatment. (b) and (c) Comparison of the UTS and elongation values of the tensile specimens, respectively. Fracture surface morphologies of the (d) CS TiB2/AlSi10Mg, (e) post-FSP treated AlSi10Mg alloy and (f) post-FSP TiB2/AlSi10Mg composites samples [152].
Post-treatment methods | Heat treatment | Hot-rolling | Friction stir processing |
---|---|---|---|
Porosity reduction | Limited | Good | Very good |
Inter-splats bonding improvement | Limited | Good | Very good |
Grain refinement | No (grain growth) | No | Good |
Residual stress release | Good | Good | Good |
Reinforcement particle redistribution | No | No | Good |
Reinforcement particle size reduction | No | No | Good |
Interface bonding of reinforcement particle/Al matrix | No | Limited | Good |
Mechanical property improvement | Limited | Limited | Good |
Table 6 Comparison of different post-treatment methods in microstructure modification and property improvement of the CS AMCs.
Post-treatment methods | Heat treatment | Hot-rolling | Friction stir processing |
---|---|---|---|
Porosity reduction | Limited | Good | Very good |
Inter-splats bonding improvement | Limited | Good | Very good |
Grain refinement | No (grain growth) | No | Good |
Residual stress release | Good | Good | Good |
Reinforcement particle redistribution | No | No | Good |
Reinforcement particle size reduction | No | No | Good |
Interface bonding of reinforcement particle/Al matrix | No | Limited | Good |
Mechanical property improvement | Limited | Limited | Good |
[1] | B.N. Guniputi, V.K. Mamidi, A.M. Xavior, Int. J. Appl. Eng. Res. 8(2013 )647-666. |
[2] |
M. Jagannatham, P. Chandran, S. Sankaran, P. Haridoss, N. Nayan, S.R. Bakshi, Carbon 160 (2020) 14-44.
DOI URL |
[3] |
I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, J. Mater. Sci. 26(1991) 1137-1156.
DOI URL |
[4] |
Y.B. Hu, W.L. Cong, Ceram. Int. 44(2018) 20599-20612.
DOI URL |
[5] | R.S. Rana, R. Purohit, S. Das, Int. J. Sci. Eng. Res. 3(2012) 1-16. |
[6] | S.P. Rawal, JOM 53 (2001) 14-17. |
[7] |
K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen, J. Mater. Process 142(2003) 738-743.
DOI URL |
[8] |
M.K. Surappa, Sadhana 28 (2003) 319-334.
DOI URL |
[9] |
T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, J. Mater. Res. 13(1998) 2445-2449.
DOI URL |
[10] | T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, 1995. |
[11] |
R. Casati, M. Vedani, Metals 4 (2014) 65-83.
DOI URL |
[12] |
D.S. Zhou, F. Qiu, Q.C. Jiang, Mater. Sci. Eng. A 622 (2015) 189-193.
DOI URL |
[13] |
M. Rahimian, N. Parvin, N. Ehsani, Mater. Sci. Eng. A 527 (2010) 1031-1038.
DOI URL |
[14] | R. Narayanan, C. Saravanan, V. Krishnan, K. Subramanian, Mech. Mech. Eng. 19(2015) 23-30. |
[15] |
C.N. He, N.Q. Zhao, C.S. Shi, S.Z. Song, J. Alloys Compd. 487(2009) 258-262.
DOI URL |
[16] |
S. Lakshmi, L. Lu, M. Gupta, J. Mater. Process 73(1998) 160-166.
DOI URL |
[17] | T.G. Durai, K. Das, S. Das, Mater. Sci. Eng. A 445 (2007) 100-105. |
[18] |
N. Gangil, A.N. Siddiquee, J. Alloys Compd. 715(2017) 91-104.
DOI URL |
[19] |
I.S. Lee, C.J. Hsu, C.F. Chen, N.J. Ho, P.W. Kao, Compos. Sci. Technol. 71(2011) 693-698.
DOI URL |
[20] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Int. J. Mach. Tools Manuf. 133(2018) 85-102.
DOI URL |
[21] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92(2018) 112-224.
DOI URL |
[22] | A.P. Alkhimov, V.F. Kosarev, A.N. Papyrin, Sov. Phys. Dokl. 35(1990) 1047-1049. |
[23] |
V. Champagne, D. Helfritch, Int. Mater. Rev. 61(2016) 437-455.
DOI URL |
[24] |
R. Lupoi, W. O’Neill, Surf. Coat. Technol. 205(2010) 2167-2173.
DOI URL |
[25] |
C. Wüstefeld, D. Rafaja, M. Motylenko, C. Ullrich, R. Drehmann, T. Grund, T. Lampke, B. Wielage, Acta Mater. 128(2017) 418-427.
DOI URL |
[26] | R. Drehmann, T. Grund, T. Lampke, B. Wielage, C. Wüstefeld, M. Motylenko, G. Schreiber, D. Rafaja, Long Beach, 2015, pp. 544-552. |
[27] | W.Y. Li, C.C. Cao, S. Yin, Prog. Mater. Sci. (2019), 100633. |
[28] |
R.N. Raoelison, C. Verdy, H. Liao, Mater. Des. 133(2017) 266-287.
DOI URL |
[29] |
H. Assadi, H. Kreye, F. Gärtner, T. Klassen, Acta Mater. 116(2016) 382-407.
DOI URL |
[30] |
A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, M. Dao, Surf. Eng. 30(2014) 369-395.
DOI |
[31] |
M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne, R.H. Hrabe. J. Therm. Spray Technol. 26(2017) 1308-1355.
DOI URL |
[32] |
M. Hassani-Gangaraj, D. Veysset, K.A. Nelson, C.A. Schuh, Scr. Mater. 145(2018) 9-13.
DOI URL |
[33] |
M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, C.A. Schuh, Acta. Mater. 158(2018) 430-439.
DOI URL |
[34] | A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V.M. Fomin, Elsevier, 2006. |
[35] |
H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta. Mater. 51(2003) 4379-4394.
DOI URL |
[36] |
M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch, Mater. Des. 25(2004) 681-688.
DOI URL |
[37] |
M. Saleh, V. Luzin, K. Spencer, Surf. Coat. Technol. 252(2014) 15-28.
DOI URL |
[38] |
D.M. Chun, M.H. Kim, J.C. Lee, S.H. Ahn, CIRP Ann-Manuf. Technol. 57(2008) 551-554.
DOI URL |
[39] |
G.J. Yang, C.J. Li, F. Han, W.Y. Li, A. Ohmori, Appl. Surf. Sci. 254(2008) 3979-3982.
DOI URL |
[40] |
S. Yin, Y.C. Xie, X.K. Suo, H.L. Liao, X.F. Wang, Mater. Lett. 138(2015) 143-147.
DOI URL |
[41] |
Y.C. Xie, S. Yin, C.Y. Chen, M.P. Planche, H.L. Liao, R. Lupoi, Scr. Mater. 125(2016) 1-4.
DOI URL |
[42] |
C.Y. Chen, Y.C. Xie, R.Z. Huang, S.H. Deng, Z.M. Ren, H.L. Liao, Mater. Lett. 210(2018) 199-202.
DOI URL |
[43] |
W.Y. Li, C.J. Li, H.L. Liao, Appl. Surf. Sci. 256(2010) 4953-4958.
DOI URL |
[44] |
X.T. Luo, C.X. Li, F.L. Shang, G.J. Yang, Y.Y. Wang, C.J. Li, Surf. Coat. Technol. 254(2014) 11-20.
DOI URL |
[45] |
A. Chaudhuri, Y. Raghupathy, D. Srinivasan, S. Suwas, C. Srivastava, Acta Mater. 129(2017) 11-25.
DOI URL |
[46] |
T. Liu, J.D. Leazer, L.N. Brewer, Acta Mater. 168(2019) 13-23.
DOI URL |
[47] |
T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Acta Mater. 54(2006) 729-742.
DOI URL |
[48] | D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, R. Moos, J. Ceram. Sci 6(2015) 147-182. |
[49] | X.M. Wang, F. Feng, M.A. Klecka, M.D. Mordasky, J.K. Garofano, T. El-Wardany, A. Nardi, V.K. Champagne, Addit. Manuf. 8(2015) 149-162. |
[50] |
P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, C. Lee. J. Therm. Spray Technol. 19(2010) 620-634.
DOI URL |
[51] |
T. Hussain, D.G. McCartney, P.H. Shipway, D. Zhang, J. Therm. Spray Technol. 18(2009) 364-379.
DOI URL |
[52] |
M. Grujicic, C.L. Zhao, C.N. Tong, W.S. DeRosset, D. Helfritch, Mater. Sci. Eng. A 368 (2004) 222-230.
DOI URL |
[53] |
M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, D. Helfritch, Appl. Surf. Sci. 219(2003) 211-227.
DOI URL |
[54] |
T. Liu, J.D. Leazer, L.N. Brewer, Acta Mater. 168(2019) 13-23.
DOI URL |
[55] |
M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, C.A. Schuh, Scr. Mater. 162(2019) 515-519.
DOI URL |
[56] |
H. Assadi, F. Gärtner, T. Klassen, H. Kreye, Scr. Mater. 162(2019) 512-514.
DOI URL |
[57] |
M.R. Rokni, C.A. Widener, G.A. Crawford, M.K. West, Mater. Sci. Eng. A 625 (2015) 19-27.
DOI URL |
[58] |
M.R. Rokni, C.A. Widener, V.K. Champagne, G.A. Crawford, S.R. Nutt, Surf. Coat. Technol. 310(2017) 278-285.
DOI URL |
[59] |
Y.K. Wei, X.T. Luo, X. Chu, G.S. Huang, C.J. Li, Mater. Sci. Eng. A 776 (2020), 139024.
DOI URL |
[60] |
B. Aldwell, E. Kelly, R. Wall, A. Amaldi, G.E. O’Donnell, R. Lupoi, J. Therm. Spray Technol. 26(2017) 1573-1584.
DOI URL |
[61] |
S. Yin, R. Jenkins, X.C. Yan, R. Lupoi, Mater. Sci. Eng. A 734 (2018) 67-76.
DOI URL |
[62] |
P. Coddet, C. Verdy, C. Coddet, F. Debray, Mater. Sci. Eng. A 662 (2016) 72-79.
DOI URL |
[63] |
J.H. Cho, Y.M. Jin, D.Y. Park, H.J. Kim, I.H. Oh, K.A. Lee, Met. Mater. Int. 17(2011) 157-166.
DOI URL |
[64] | C.Y. Chen, Y.C. Xie, X.C. Yan, S. Yin, H. Fukanuma, R.Z. Huang, R.X. Zhao, J. Wang, Z.M. Ren, M. Liu, Addit. Manuf. 27(2019) 595-605. |
[65] |
V.S. Bhattiprolu, K.W. Johnson, O.C. Ozdemir, G.A. Crawford, Surf. Coat. Technol. 335(2018) 1-12.
DOI URL |
[66] | S. Bagherifard, A.H. Astaraee, M. Locati, A. Nawaz, S. Monti, J. Kondás, R. Singh, M. Guagliano, Addit. Manuf. 33(2020), 101131. |
[67] |
X.T. Luo, M.L. Yao, N.S. Ma, M. Takahashi, C.J. Li, Mater. Des. 155(2018) 384-395.
DOI URL |
[68] |
W.H. Ma, Y.C. Xie, C.Y. Chen, H. Fukanuma, J. Wang, Z.M. Ren, R.Z. Huang, J. Alloys Compd. 792(2019) 456-467.
DOI URL |
[69] |
P. Coddet, C. Verdy, C. Coddet, F. Debray, F. Lecouturier, Surf. Coat. Technol. 277(2015) 74-80.
DOI URL |
[70] |
B. AL-Mangour, P. Vo, R. Mongrain, E. Irissou, S. Yue. J. Therm. Spray Technol. 23(2014) 641-652.
DOI URL |
[71] |
S. Yin, J. Cizek, X.C. Yan, R. Lupoi, Surf. Coat. Technol. 370(2019) 353-361.
DOI URL |
[72] |
C.J. Huang, H.J. Wu, Y.C. Xie, W.Y. Li, C. Verdy, M.P. Planche, H.L. Liao, G. Montavon, Surf. Coat. Technol. 371(2019) 211-223.
DOI URL |
[73] |
N.H. Tariq, L. Gyansah, J.Q. Wang, X. Qiu, B. Feng, M.T. Siddique, T.Y. Xiong, Surf. Coat. Technol. 339(2018) 224-236.
DOI URL |
[74] | L. Gyansah, X. Qiu, C.N. Jia, H.B. Awais, C.W. Zheng, H. Du, J.Q. Wang, T.Y. Xiong, J. Mater. Sci 35(2019) 1053-1063. |
[75] |
X.L. Xie, C.Y. Chen, Y.C. Xie, Z.M. Ren, E. Aubry, G. Ji, H.L. Liao, J. Alloys Compd. 749(2018) 523-533.
DOI URL |
[76] |
X.L. Xie, Y. Ma, C.Y. Chen, G. Ji, C. Verdy, H.J. Wu, Z. Chen, S. Yuan, B. Normand, S. Yin, J. Alloys Compd. 819(2020), 152962.
DOI URL |
[77] |
C.Y. Chen, Y.C. Xie, X.C. Yan, R.Z. Huang, M. Kuang, W.Y. Ma, R.X. Zhao, J. Wang, M. Liu, Z.M. Ren, J. Alloys Compd. 785(2019) 499-511.
DOI URL |
[78] | S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H.L. Liao, W.Y. Li, R. Lupoi, Addit. Manuf. 21(2018) 628-650. |
[79] |
A. Sova, S. Grigoriev, A. Okunkova, I. Smurov, Int. J. Adv. Manuf. Technol. 69(2013) 2269-2278.
DOI URL |
[80] |
J. Pattison, S. Celotto, R. Morgan, M. Bray, W. O’neill, Int. J. Mach. Tools Manuf. 47(2007) 627-634.
DOI URL |
[81] | W.Y. Li, K. Yang, S. Yin, X.W. Yang, Y.X. Xu, R. Lupoi, J. Mater. Sci 34(2018) 440-457. |
[82] |
W.Y. Chen, Y. Yu, A.K. Tieu, J.Y. Hao, L. Wang, S.Y. Zhu, J. Yang, Tribol. Int. 142(2020), 105992.
DOI URL |
[83] |
S.A. Alidokht, S. Yue, R.R. Chromik, Surf. Coat. Technol. 357(2019) 849-863.
DOI URL |
[84] |
H.X. Hu, S.L. Jiang, Y.S. Tao, T.Y. Xiong, Y.G. Zheng, Nucl. Eng. Des. 241(2011) 4929-4937.
DOI URL |
[85] |
N.M. Melendez, V.V. Narulkar, G.A. Fisher, A.G. McDonald, Wear 306 (2013) 185-195.
DOI URL |
[86] |
Y.T.R. Lee, H. Ashrafizadeh, G. Fisher, A. McDonald, Surf. Coat. Technol. 324(2017) 190-200.
DOI URL |
[87] |
M. Yandouzi, P. Richer, B. Jodoin, Surf. Coat. Technol. 203(2009) 3260-3270.
DOI URL |
[88] |
E. Irissou, J.G. Legoux, B. Arsenault, C. Moreau, J. Therm. Spray Technol. 16(2007) 661-668.
DOI URL |
[89] |
K. Spencer, D.M. Fabijanic, M.X. Zhang, Surf. Coat. Technol. 204(2009) 336-344.
DOI URL |
[90] |
W.Y. Li, C.L. Yang, H.L. Liao, Mater. Des. 32(2011) 388-394.
DOI URL |
[91] |
M. Yu, X.K. Suo, W.Y. Li, Y.Y. Wang, H.L. Liao, Appl. Surf. Sci. 289(2014) 188-196.
DOI URL |
[92] |
Y.Y. Wang, B. Normand, N. Mary, M. Yu, H.L. Liao, Surf. Coat. Technol. 315(2017) 314-325.
DOI URL |
[93] | H. Chen, Z. Pala, T. Hussain, D.G. McCartney, Proc. Inst. Mech. Eng. L 233 (2017) 1044-1052. |
[94] |
O. Meydanoglu, B. Jodoin, E.S. Kayali, Surf. Coat. Technol. 235(2013) 108-116.
DOI URL |
[95] |
S.R. Bakshi, V. Singh, K. Balani, D.G. McCartney, S. Seal, A. Agarwal, Surf. Coat.Technol. 202(2008) 5162-5169.
DOI URL |
[96] | X.L. Xie, C.Y. Chen, G. Ji, R. Xu, Z.Q. Tan, Y.C. Xie, Z.Q. Li, H.L. Liao, Nano Mater. Sci. 1(2019) 137-141. |
[97] |
D.J. Woo, F.C. Heer, L.N. Brewer, J.P. Hooper, S. Osswald, Carbon 86 (2015) 15-25.
DOI URL |
[98] | D.J. Woo, B. Sneed, F. Peerally, F.C. Heer, L.N. Brewer, J.P. Hooper, S. Osswald, S Carbon 63 (2013) 404-415. |
[99] | C.Y. Chen, Y.C. Xie, X.C. Yan, M. Ahmed, R. Lupoi, J. Wang, Z.M. Ren, H.L. Liao, S. Yin, Addit. Manuf. 36(2020), 101434. |
[100] | R.E. Blose, B.H. Walker, R.M. Walker, S.H. Froes, Met. Powder Rep. 61(2006) 30-37. |
[101] | J. Schell, USA, 2016. |
[102] | G. Kilchenstein, JTEG Monthly Teleconference, 2016. |
[103] | W.Y. Li, H. Assadi, F. Gaertner, S. Yin, Crit. Rev. Solid State Mater.Sci. 44(2019) 109-156. |
[104] |
Q. Wang, K. Spencer, N. Birbilis, M.X. Zhang, Surf. Coat. Technol. 205(2010) 50-56.
DOI URL |
[105] |
H. Kwon, S. Cho, A. Kawasaki, Mater. Trans. 56(2015) 108-112.
DOI URL |
[106] |
X. Qiu, J.Q. Wang, J.R. Tang, L. Gyansah, Z.P. Zhao, T.Y. Xiong, Surf. Coat. Technol. 350(2018) 391-400.
DOI URL |
[107] |
V. De Simone, D. Caccavo, G. Lamberti, M. d’Amore, A.A. Barba, Powder Technol. 340(2018) 411-419.
DOI URL |
[108] |
K.S. Al-Hamdani, J.W. Murray, T. Hussain, A. Kennedy, A.T. Clare, Mater. Lett. 198(2017) 184-187.
DOI URL |
[109] |
K.S. Al-Hamdani, J.W. Murray, T. Hussain, A.T. Clare, Surf. Coat. Technol. 374(2019) 21-31.
DOI URL |
[110] | S. Gojon, French, 2015. |
[111] |
K. Kang, G. Bae, J. Won, C. Lee, Acta Mater. 60(2012) 5031-5039.
DOI URL |
[112] |
K. Kang, J. Kim, H. Park, C. Lee, Surf. Coat. Technol. 289(2016) 124-135.
DOI URL |
[113] | H. Chen, Z. Pala, T. Hussain, D.G. McCartney, Proc. Inst. Mech. Eng. L 233 (2019) 1044-1052. |
[114] |
W.Y. Li, G. Zhang, C. Zhang, O. Elkedim, H. Liao, C. Coddet, J. Therm. Spray Technol. 17(2008) 316-322.
DOI URL |
[115] |
S.R. Bakshi, V. Singh, D.G. McCartney, S. Seal, A. Agarwal, Scr. Mater. 59(2008) 499-502.
DOI URL |
[116] |
Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Acta Mater. 84(2015) 292-304.
DOI URL |
[117] |
M.X. Chen, X.P. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H.W. Wang, J.P. Kruth, Appl. Sci. 7(2017) 250.
DOI URL |
[118] |
E. Sansoucy, P. Marcoux, L. Ajdelsztajn, B. Jodoin, Surf. Coat. Technol. 202(2008) 3988-3996.
DOI URL |
[119] |
J.M. Shockley, H.W. Strauss, R.R. Chromik, N. Brodusch, R. Gauvin, E. Irissou, J.G. Legoux, Surf. Coat. Technol. 215(2013) 350-356.
DOI URL |
[120] |
Y.S. Tao, T.Y. Xiong, C. Sun, H.Z. Jin, H. Du, T.F. Li, Appl. Surf. Sci. 256(2009) 261-266.
DOI URL |
[121] |
W.Y. Li, G. Zhang, H.L. Liao, C. Coddet, J. Mater. Process 202(2008) 508-513.
DOI URL |
[122] |
Q. Wang, N. Birbilis, H. Huang, M.X. Zhang, Surf. Coat. Technol. 232(2013) 216-223.
DOI URL |
[123] |
J.M. Shockley, S. Descartes, P. Vo, E. Irissou, R.R. Chromik, Surf. Coat. Technol. 270(2015) 324-333.
DOI URL |
[124] |
R. Fernandez, B. Jodoin, J. Therm. Spray Technol. 27(2018) 603-623.
DOI URL |
[125] |
S. Kumar, S.K. Reddy, S.V. Joshi, Surf. Coat. Technol. 318(2017) 62-71.
DOI URL |
[126] |
N.H. Tariq, L. Gyansah, X. Qiu, H. Du, J.Q. Wang, B. Feng, D.S. Yan, T.Y. Xiong, Mater. Des. 156(2018) 287-299.
DOI URL |
[127] |
M. Yandouzi, H. Bu, M. Brochu, B. Jodoin, J. Therm. Spray Technol. 21(2012) 609-619.
DOI URL |
[128] | D. Poirier, J.G. Legoux, R.A.L. Drew, R. Gauvin, J.Therm. Spray Technol. 20(2011) 275-284. |
[129] |
X.L. Xie, B. Hosni, C.Y. Chen, H.J. Wu, Y.L. Li, Z. Chen, C. Verdy, O.E.I. Kedim, Q.D. Zhong, A. Addad, Surf. Coat. Technol. 404(2020), 126460.
DOI URL |
[130] |
Y.Y. Wang, B. Normand, N. Mary, M. Yu, H.L. Liao, Surf. Coat. Technol. 251(2014) 264-275.
DOI URL |
[131] |
H.Y. Bu, M. Yandouzi, C. Lu, D. MacDonald, B. Jodoin, Surf. Coat. Technol. 207(2012) 155-162.
DOI URL |
[132] |
F.S.D. Silva, J. Bedoya, S. Dosta, N. Cinca, I.G. Cano, J.M. Guilemany, A.V. Benedetti, Corros. Sci. 114(2017) 57-71.
DOI URL |
[133] |
Q. Wang, Q. Sun, M.X. Zhang, W.J. Niu, C.B. Tang, K.S. Wang, X. Rui, L. Zhai, L. Wang, Surf. Coat. Technol. 352(2018) 627-633.
DOI URL |
[134] |
Z.C. Zhang, F.C. Liu, E.H. Han, L. Xu, P.C. Uzoma, Surf. Coat. Technol. 370(2019) 53-68.
DOI URL |
[135] | X.W. Yang, W.Y. Li, S.Q. Yu, Y.X. Xu, K.W. Hu, Y.B. Zhao, J. Mater. Sci 59(2020) 117-128. |
[136] |
R. Fernandez, B. Jodoin, J. Therm. Spray Technol. 28(2019) 737-755.
DOI URL |
[137] |
D.L. Cong, Z.S. Li, Q.B. He, H.B. Chen, Z.P. Zhao, L.P. Zhang, H.L. Wu, Surf. Coat. Technol. 326(2017) 247-254.
DOI URL |
[138] |
X. Qiu, L. Qi, J.Q. Wang, T.Yi. Xiong, Mater. Sci. Eng. A 772 (2020), 138828.
DOI URL |
[139] |
H.R. Lashgari, A.R. Sufizadeh, M. Emamy, Mater. Des. 31(2010) 2187-2195.
DOI URL |
[140] |
K. Spencer, D.M. Fabijanic, M.X. Zhang, Surf. Coat. Technol. 204(2009) 336-344.
DOI URL |
[141] | J.M. Shockley, E.F. Rauch, R.R. Chromik, S. Descartes, Wear 376 (2017) 1411-1417. |
[142] |
D. Dzhurinskiy, E. Maeva, E. Leshchinsky, R.G. Maev, J. Therm. Spray Technol. 21(2012) 304-313.
DOI URL |
[143] |
Y.K. Wei, X.T. Luo, Y. Ge, X. Chu, G.S. Huang, C.J. Li, J. Alloys Compd. 806(2019) 1116-1126.
DOI URL |
[144] |
E. Lapushkina, S. Yuan, N. Mary, J. Adrien, K. Ogawa, B. Normand, Surf. Coat. Technol. 400(2020), 126193.
DOI URL |
[145] |
P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino, Composites Part B 147 (2018) 162-168.
DOI URL |
[146] |
J. Xu, W.J. Liu, Wear 260 (2006) 486-492.
DOI URL |
[147] |
S. Yin, X.F. Wang, X.K. Suo, H.L. Liao, Z.W. Guo, W.Y. Li, C. Coddet, Acta Mater. 61(2013) 5105-5118.
DOI URL |
[148] |
Y.C. Xie, M.P. Planche, R. Raoelison, P. Hervé, X.K. Suo, P.J. He, H.L. Liao, Surf. Coat. Technol. 318(2017) 99-105.
DOI URL |
[149] | K. Yang, W.Y. Li, C.J. Huang, X.W. Yang, Y.X. Xu, J. Mater. Sci 34(2018) 2167-2177. |
[150] |
K. Yang, W.Y. Li, P.L. Niu, X.W. Yang, Y.X. Xu, J. Alloys Compd. 736(2018) 115-123.
DOI URL |
[151] |
X. Qiu, L. Qi, Y.N. Zan, Y.J. Wang, J.Q. Wang, H. Du, T.Y. Xiong, J. Alloys Compd. 780(2019) 597-606.
DOI URL |
[152] | X.L. Xie, C.Y. Chen, Z. Chen, W. Wang, S. Yin, G. Ji, H.L. Liao, Composites Part B202 (2020), 108404. |
[153] |
M. Tang, P.C. Pistorius, Int. J. Fatigue 94 (2017) 192-201.
DOI URL |
[154] |
L. Girelli, M. Tocci, M. Gelfi, A. Pola, Mater. Sci. Eng. A 739 (2019) 317-328.
DOI URL |
[155] |
Q. Yan, B. Song, Y.S. Shi, J. Mater. Sci 41(2020) 199-208.
DOI URL |
[156] | X.L. Xie, C.Y. Chen, Z. Chen, H.J. Wu, C. Verdy, Z.M. Ren, G. Ji, H.L. Liao, J. Alloys Compd. (2021), Submitted for publication. |
[157] |
Z.P. Zhao, J.R. Tang, C.L. Jia, X. Qiu, Y.P. Ren, H.H. Liu, Y.F. Shen, H. Du, X.Y. Cui, J.Q. Wang, Mater. Des. 185(2020), 108249.
DOI URL |
[158] |
H.L. Zhao, C.W. Tan, X.D. Yu, X.J. Ning, Z.H. Nie, H.N. Cai, F.C. Wang, Y. Cui, J. Alloys Compd. 741(2018) 883-894.
DOI URL |
[159] |
Z.P. Zhao, J.R. Tang, Y.P. Ren, H.H. Liu, M. Tong, L.S. Yin, H. Du, J.Q. Wang, T.Y. Xiong, Mater. Sci. Eng. A 775 (2020), 138968.
DOI URL |
[160] |
F. Khodabakhshi, B. Marzbanrad, H. Jahed, A.P. Gerlich, Appl. Surf. Sci. 462(2018) 739-752.
DOI URL |
[161] |
C.J. Huang, X.C. Yan, W.Y. Li, W.B. Wang, C. Verdy, M.P. Planche, H.L. Liao, G. Montavon, Appl. Surf. Sci. 451(2018) 56-66.
DOI URL |
[162] |
F. Khodabakhshi, B. Marzbanrad, L.H. Shah, H. Jahed, A.P. Gerlich, Surf. Coat. Technol. 331(2017) 116-128.
DOI URL |
[163] |
C.J. Huang, W.Y. Li, Z.H. Zhang, M.S. Fu, M.P. Planche, H.L. Liao, G. Montavon, Surf. Coat. Technol. 296(2016) 69-75.
DOI URL |
[164] |
K. Yang, W.Y. Li, Y.X. Xu, X.W. Yang, J. Alloys Compd. 774(2019) 1223-1232.
DOI URL |
[165] |
F. Khodabakhshi, A.P. Gerlich, J. Manuf. Process. 36(2018) 77-92.
DOI URL |
[166] |
K.J. Hodder, H. Izadi, A.G. McDonald, A.P. Gerlich, Mater. Sci. Eng. A 556 (2012) 114-121.
DOI URL |
[167] |
H.B.M. Rajan, I. Dinaharan, S. Ramabalan, E.T. Akinlabi, J. Alloys Compd. 657(2016) 250-260.
DOI URL |
[1] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[2] | Yinbao Tian, Junqi Shen, Shengsun Hu, Jian Gou, Yan Cui. Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys [J]. J. Mater. Sci. Technol., 2021, 74(0): 35-45. |
[3] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[4] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
[5] | H.L. Wei, F.Q. Liu, L. Wei, T.T. Liu, W.H. Liao. Multiscale and multiphysics explorations of the transient deposition processes and additive characteristics during laser 3D printing [J]. J. Mater. Sci. Technol., 2021, 77(0): 196-208. |
[6] | Y. Chew, Z.G. Zhu, F Weng, S.B. Gao, F.L. Ng, B.Y Lee, G.J. Bi. Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy [J]. J. Mater. Sci. Technol., 2021, 77(0): 38-46. |
[7] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[8] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[9] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
[10] | Cecilie V. Funch, Alessandro Palmas, Kinga Somlo, Emilie H. Valente, Xiaowei Cheng, Konstantinos Poulios, Matteo Villa, Marcel A.J. Somers, Thomas L. Christiansen. Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures [J]. J. Mater. Sci. Technol., 2021, 81(0): 67-76. |
[11] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[12] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[13] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[14] | Y.M. Ren, X. Lin, H.O. Yang, H. Tan, J. Chen, Z.Y. Jian, J.Q. Li, W.D. Huang. Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue [J]. J. Mater. Sci. Technol., 2021, 83(0): 18-33. |
[15] | Li Sun, Xiaobo Ren, Jianying He, Zhiliang Zhang. Numerical investigation of a novel pattern for reducing residual stress in metal additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 67(0): 11-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||